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Understanding Modern Transistors and Diodes

Written in a concise, easy-to-read style, this text for senior undergraduate and graduate
courses covers all key topics thoroughly. It is also a useful self-study guide for practising
engineers who need a complete, up-to-date review of the subject.

Key features:

� Rigorous theoretical treatment combined with practical detail
� A theoretical framework built up systematically from the Schrödinger Wave Equation

and the Boltzmann Transport Equation
� Covers MOSFETS, HBTs, HJFETS, solar cells and LEDs.
� Uses the PSP model for MOSFETS
� Describes the operation of modern, high-performance transistors and diodes
� Evaluates the suitability of various transistor types and diodes for specific modern

applications
� Examines solar cells and LEDs for their potential impact on energy generation and

reduction
� Includes a chapter on nanotransistors to prepare students and professionals for the

future
� Rigorous treatment of device capacitance
� Provides results of detailed numerical simulations to compare with analytical solutions
� End-of-chapter exercises to aid understanding
� Online availability of sets of lecture slides for undergraduate and graduate courses

David L. Pulfrey is a Professor in the Department of Electrical and Computer Engineering
at the University of British Columbia, Canada, where he has been since receiving his
Ph.D. in 1968 from the University of Manchester, UK. He has won teaching awards at
the university-, provincial- and international-levels. Most recently he won the 2009 IEEE
Electron Devices Society Education Award “for contributions to the teaching of electron
devices at both the undergraduate and graduate levels”. He has received recognition for
his research work on a wide range of semiconductor devices by being elected Fellow of
the IEEE in 2000, and Fellow of the Canadian Academy of Engineering in 2003.
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Preface

Understanding Modern Transistors and Diodes is a textbook on semiconductor devices
with three objectives: (i) to provide a rigorous, yet readable, account of the theoretical
basis of the subject of semiconductor devices; (ii) to apply this theory to contemporary
transistors and diodes so that their design and operation can be thoroughly understood;
(iii) to leave readers with a sense of confidence that they are well equipped to appreciate
the workings of tomorrow’s devices, and to participate in their development.

There are many books on semiconductor devices, often with similar objectives, and
it is reasonable to ask: why write another one? The answer is two-fold: firstly, after
teaching and researching in the area for 40 years, I have a strong personal viewpoint
on how the subject can best be presented to students; secondly, we are at a particularly
interesting point in the development of the subject – we are at the micro/nano boundary
for high-performance transistors, and we are on the threshold of seeing optoelectronic
diodes make a contribution to our planet’s sustainability.

These circumstances are new, and are quite different from those of 20 years ago
when I was last moved to write a book on semiconductor devices. At that time the
major development was the incorporation of thousands of transistors into monolithic
integrated circuits. To design and analyse such circuits, the transistors were represented
by a set of model parameters. One could use these parameters to design a circuit
without understanding how they related to the physical properties of the actual transistors
comprising the circuit. To address this deficiency I co-authored a book with Garry Tarr
in 1989 that specifically linked circuit-model parameters to the physical properties of
transistors and diodes.1

Today, after a further 20 years of teaching and researching in the area of solid-
state devices, I find myself lecturing on, and needing to know more about: the effect
of miniaturization on the performance of silicon field-effect transistors, as used in
increasingly dense integrated circuits and memories; the displacement of the silicon
bipolar transistor from its traditional areas of strength (high-frequency, high-power,
low-noise) by heterostructural devices based on compound semiconductors; how device
engineers and physicists can address sustainability issues in their domain, particularly
the generation of electricity from a renewable source via more cost-effective solar cells,
and the reduction of electricity usage for lighting via high-brightness light-emitting
diodes. Sometimes I feel as though the trends in semiconductor devices are creating

1 D.L. Pulfrey and N.G. Tarr, Introduction to Microelectronic Devices, Prentice-Hall, 1989.

xv
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xvi Preface

an impossible situation: the need for greater depth of knowledge in a wider variety of
devices.

The solution to this dilemma comes back to the first objective of this book: provide a
rigorous and digestible theoretical basis, from which the understanding of devices of the
modern era, and of the near future, follows naturally. This is how Understanding Modern
Transistors and Diodes meets the challenge of covering a wide breadth of topics in the
depth they warrant, while managing to limit the material to that which can be covered in
one or two one-term courses. The requisite physics is treated properly once and is then
approximated, and seen to be approximated, where justifiable, when being applied to var-
ious devices. The physics has to be quantum mechanical for several reasons: band struc-
ture is important for all the devices we discuss, particularly for heterostructural diodes
and transistors of both field-effect and bipolar varieties; electron-photon interactions are
obviously relevant in solar cells and light-emitting diodes; tunnelling is an important
leakage-current mechanism in field-effect transistors; future one-dimensional transistors
may be so short that ballistic, rather than dissipative, transport will be operative. Even
in ‘classical’ devices transport must be treated rigorously in view of the trends towards
miniaturization: the Drift-Diffusion Equation cannot be blindly applied, but must be
justified after a proper treatment of its parent, the Boltzmann Transport Equation. One
intermediate solution to this equation, the charge-density continuity equation, provides
the basis for our rigorous and formal description of capacitance. This device property is
crucially important to the transistors presented in the application-specific chapters in the
book on digital switching, high-frequency performance and semiconductor memories.
As a final emphasis on the rigour of this book, the traditional SPICE-related model
for the MOS field-effect transistor is put in its rightful place, i.e., as a computationally
expedient approximation to the ‘surface-potential’ model. If SPICE has helped design
circuits that have enabled higher performance computers, then that has been its downfall,
because those computers can now permit the more rigorous surface-potential model to
be used for the more accurate simulation of integrated circuits!

Understanding Modern Transistors and Diodes is intended for students at the graduate
or senior-undergraduate level who are studying electronics, microelectronics or nano-
electronics, within the disciplines of electrical and computer engineering, engineering
physics or physics. However, there is sufficient material on basic semiconductor theory
and elementary device physics for the book to be appropriate also for a junior-level
course on solid-state electronic devices. Additionally, the inclusion in the book of spe-
cific chapters on the application of the foundation material to modern, high-performance
transistors and diodes, and a glimpse into the future of true nanotransistors, should make
the book of interest to practitioners and managers in the semiconductor industry, partic-
ularly those who have not had the opportunity to keep up with recent developments in
the field. It is my hope that the depth and breadth of this book might make it a ‘one-stop
shop’ for several levels of courses on semiconductor devices, and for device-practitioner
neophytes and veterans alike. The material in this book, in various stages of develop-
ment, has been used by me for senior-level undergraduate courses and for graduate-level
courses on semiconductor devices at UBC, for short courses to engineers at PMC-Sierra
in Vancouver, and to graduate students at the University of Pisa and at the Technical
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Preface xvii

University of Vienna. I thank all those students of these courses who have commented
on the material and have sought to improve it.

As an undergraduate I focused on ‘heavy-current electrical engineering’, and never
benefited from a course on semiconductor devices. I am basically ‘self-taught’ in the
area, and I think that this has attuned me particularly well to the nature of the difficulties
many students face in trying to master this profound subject. Hopefully this book
circumvents most of these obstacles to the understanding of how semiconductor devices
work. If it does, then thanks are due to many people who have enlightened me over
my 40 years of working in the subject area, both as a professor at the University of
British Columbia, and as a visiting research engineer at various industry, government,
and university laboratories around the world. I particularly want to mention Lawrence
Young, who hired me as a postdoc in 1968, and thereby started my transformation to a
‘light-current electrical engineer’. I owe a great debt of gratitude to my graduate students,
with whom I have worked collegially, learning with them, and sharing the work ‘in the
trenches’ as much as possible. One of the great pleasures of writing this book has been
to call on some of them, and on some former undergraduates too, to make sure that the
material in some of the device-specific chapters in the book is truly modern. Particularly,
I wish to thank: Alvin Loke (AMD, Colorado) for his enthusiastic support, his insights
into the finer points of modern, high-performance CMOS devices and his arrangement
of the procurement of the cover photograph from AMD’s Dresden laboratory; Tony
St. Denis (Triquint, Portland) for provision of material on high-frequency and low-noise
heterojunction field-effect transistors; Mani Vaidyanathan (University of Alberta) for
his insights into high-frequency devices, and for his encouragement; Leonardo Castro
(Qimonda, Munich) for helpful details on DRAMs; David John (NXP, Eindhoven) for
useful information on silicon power transistors, and for alerting me to Philips’ version
of the MOSFET surface-potential model; Shawn Searles (AMD, Austin) for sharing his
thoughts on where Si CMOS is heading; Gary Tarr (Carleton University) for commenting
on the solar cell chapter. I also wish to thank Ivan Pesic of Silvaco Data Systems for
making a copy of his company’s excellent simulation software, Atlas, available to me
during 2008. At Cambridge University Press, England, I thank Julie Lancashire for
her encouragement of this project, and Sarah Matthews, Caroline Brown and Richard
Marston for their assistance in bringing it to fruition.

Most ‘part-time’ authors of technical books comment on the interruptions to their
family life that writing a textbook entails, and I am no exception. My children, their
spouses and my grandchildren are my friends, and I am conscious of the time I have
missed spending with them. I hope they will think that this book has been worth it. The
writing of it has been sustained by the encouragement, support and understanding of
my wife, Eileen, to whom I give my deepest thanks.

David Pulfrey
Vancouver



P1: Trim: 174mm × 247mm Top: 0.498in Gutter: 0.664in

CUUK824-fm cuuk824/Pulfrey 978 0 521 51460 6 December 25, 2009 21:59

xviii



P1: Trim: 174mm × 247mm Top: 0.498in Gutter: 0.664in

pulfrey_cup cuuk824/Pulfrey 978 0 521 51460 6 December 25, 2009 21:51

1 Introduction

It is highly probable that you will use a laptop computer when doing the exercises in
this book. If so, you may be interested to know that the central processing unit of your
computer resides in a thin sliver of silicon, about 1 square centimetre in area. This small
chip contains over 100,000,000 Si MOSFETs,1 each about a thousand times smaller
than the diameter of a human hair! The slender computer that you nonchalantly stuff
into your backpack has more computing power than the vacuum-tube computers that
occupied an entire room when I was a student over 40 years ago.

When you are reading this book, you may be distracted by an incoming call on your
cell ’phone. That may get you wondering what’s inside your sleek ‘mobile’. If you
opened it up, and knew where to look, you’d find some GaAs HBTs.2 These transistors
can operate at the high frequencies required for local-area-network telecommunications,
and they can deliver the power necessary for the transmission of signals.

Of course, a cell ’phone nowadays is no longer just a replacement for those clunking,
tethered, hand-sets of not so long ago: it is also a camera and a juke box. The immense
storage requirements of these applications are met by Flash memory, comprising more
millions of Si MOSFETs.

Your cell ’phone is really a PDA,3 and probably also allows internet access, in which
case you may wonder how signals from around the globe find their way into your
machine. Somewhere in the communications chain there’s probably a low-noise amplifier
to receive tiny signals and not add undue noise to them. GaAs HBTs are good for
this, but even better are InP HEMTs.4 If satellites are involved, then the base station
will employ high-power transistors, possibly lateral-diffused Si MOSFETs, or maybe
GaN HJFETs.5

So, without straying very far from where you are sitting as you read this, you have
tangible evidence of the dramatic influence electronics has on the way many of us conduct
our business and recreation. All the different transistors mentioned above are described
in this book, and are grouped according to their ability to perform: in high-speed digital
logic; at high frequencies; with low noise; at high output power; in semiconductor
memory.

1 Metal-Oxide-Semiconductor Field-Effect Transistors.
2 Heterojunction Bipolar Transistors.
3 Personal Digital Assistant.
4 High Electron Mobility Transistors.
5 Heterojunction Field-Effect Transistors.

1
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2 1 Introduction

Of course, our electronics-oriented activities would not be possible if the supply of
electricity were curtailed. This could happen, either by the exhaustion of the Earth’s
store of fossil fuels, or by the threat to our habitable environment that the extraction
and use of them entails. Alternate, and renewable, forms of electrical energy generation
are desirable; photovoltaics, using semiconductor diodes as solar cells, is an attractive
proposition. How solar cells work is described in this book. We look at traditional Si
cells, and at both thin-film cells and tandem cells for possible implementation in the
future.

You may know that about 20% of the world’s energy consumption goes into producing
light. Glance up at the incandescent light bulb that is illuminating your room: it’s so
inefficient that if you had a few of them in use, then you probably wouldn’t need to heat
your study in winter! Again, some alternative is needed; LEDs6 using diodes made from
compound semiconductors are beginning to make an impact in this area. We describe
how high-brightness LEDs work, and look at ways of producing white light.

To understand the operation of all these transistors and diodes, and to provide the
knowledge base that will enable you to understand new devices as they appear, and to
design better devices yourself, a solid, physical understanding of semiconductors must
be attained. The first part of this book is devoted to this. The emphasis is on Quantum
Mechanics, as this branch of physics is needed increasingly to understand transistors
as they move from the micro- to the nano-realm, and also, of course, to understand
interactions between electrons and holes and photons in optoelectronic diodes.

The book ends with a brief look at cylindrical nanotransistors, the future development
of which may perhaps involve you?

Enjoy the book!

6 Light-Emitting Diodes.
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2 Energy band basics

Louis de Broglie, in his Ph.D. thesis of 1924, postulated that every object that has
momentum p also has a wavelength λ:

p = h

λ
, (2.1)

where h is Planck’s constant. Macroscopic objects of our everyday experience have
extremely short wavelengths, so they are invariably viewed as particles, with a point
mass and an observable trajectory. Contrarily, microscopic objects can have much longer
wavelengths, and may do wave-like things, such as diffract around other microscopic
objects. Electrons and atoms are microscopic objects, so when we need to consider them
both together we must take a quantum-mechanical, rather than a classical, approach.
This is what we do in this chapter. Our initial goal is to develop the concept of energy
bands, representing ranges of permissible energies for electrons within a solid. We then
seek to provide an understanding of related concepts that are used throughout this book:
electron states, crystal momentum, band structure, holes, effective mass, energy band
diagrams. These objectives are most directly arrived at from a consideration of the
periodic nature of the potential through which the electrons would move in a perfectly
crystalline material.

2.1 Periodic structures

Crystalline structures are based on a matrix of points called a Bravais lattice. For the
Group IV semiconductors and most of the III-V semiconductors that are considered in
this book, the Bravais lattice is the face-centred cubic lattice. To this underlying structure
are added the actual atoms that constitute the basis of a particular material. The basis
for Si, Ge, GaAs, InP, for example, comprises two atoms, which are shown as any
neighbouring pair of shaded and unshaded atoms in Fig. 2.1. Each atom occupies a site
on a face-centred cubic lattice, so the actual structure comprises two, interpenetrating,
face-centred cubic lattices. When the two atoms are the same, as in the elemental
semiconductors Si and Ge, the structure is called diamond. When the two atoms are
different, e.g., Ga and As, the structure is referred to as sphalerite or zinc blende. The
bonding of atoms in these structures is tetragonal, as shown by the linkages in Fig. 2.1.

Instead of trying to deal with the countless numbers of atoms that comprise an actual
piece of crystalline material, it is often convenient to capture the structural essence of a

3
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a

y

x

z

Figure 2.1 The diamond and sphalerite crystal structure. There are two, interpenetrating,
face-centred cubic (FCC) lattices, one comprising the shaded atoms and the other comprising the
unshaded atoms. The corresponding points in each FCC lattice are displaced by a

4 (x̂ + ŷ + ẑ),
where a, the lattice constant, is the length of the side of the cube. Adapted from Sze [1], C© John
Wiley & Sons, Inc. 1985, reproduced with permission.

crystal in its primitive unit cell, or, simply, primitive cell. This is a volume, containing
precisely one lattice point, from which, by appropriate rotations and translations, the
space of the Bravais lattice can be exactly filled. There is no unique primitive unit cell for
a given Bravais lattice, and one of them is shown by the dashed lines in Fig. 2.1. Another
primitive unit cell is the Wigner-Seitz primitive cell, the construction of which is
illustrated in Fig. 2.2 for a simple face-centred rectangular matrix of unshaded atoms. The
primitive unit cell in this case is a hexagon, which also contains one of the shaded atoms
from an identical matrix of atoms. Thus, this particular crystal structure has a basis of two.
For a real 3-D crystal the lines between nearest-neighbour atoms are bisected by planes;
and for the face-centred cubic lattice the Wigner-Seitz cell is a rhombic dodecahedron
[2, Fig. 1.8b].

2.2 Periodic potential

To illustrate the relationship between energy and momentum in a crystalline material,
we consider a ‘toy’ structure comprising a one-dimensional array of primitive cells, with
each cell having a basis of unity, and the atom being monovalent (see Fig. 2.3a). The
potential energy of a single electron due to Coulombic interaction with the ion cores
of the monovalent atoms is shown in Fig. 2.3b. However, we are not interested here
in the precise form of the potential energy: we are only concerned with its periodicity.
Therefore, we reduce the potential-energy profile to the delta-function representation
shown in Fig. 2.3d. Don’t be alarmed that the last profile might not be very realistic:
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Figure 2.2 Example of a 2-D crystal comprising simple face-centred rectangular arrays of
unshaded and shaded atoms. The Wigner-Seitz primitive unit cell is shown by the solid lines.
These lines connect the perpendicular bisectors of the lines joining one unshaded atom to each
neighbouring unshaded atom. One atom from the shaded array falls within the primitive unit
cell; thus, this crystal structure has a basis of two atoms.

(a)

(b)

(c)

(d)

x

Po
te

nt
ia

l e
ne

rg
y 

of
 e

le
ct

ro
n

 

x

+ + +

0 2a−a a

Figure 2.3 (a) 1-D periodic array of primitive cells, each cell containing one monovalent atom.
(b) 1-D Coulombic potential energy for an electron in the 1-D array. Dashed lines are the
potential energies due to a single ion core. Solid lines are the total potential energy. (c) 1-D
square well representation of (b). (d) 1-D delta-function representation of (c).

even Fig. 2.3b is inaccurate, as it omits effects such as: the potential energy of an electron
due to the proximity of other electrons; the different spacing between atoms in different
directions of the real (3-D) crystal; and the possible presence of dissimilar elements in
the crystal, e.g., as in compound semiconductors, such as GaAs. The important fact is
that any periodic potential leads to the revelation of energy bands, and, therefore, will do



P1: Trim: 174mm × 247mm Top: 0.498in Gutter: 0.664in

pulfrey_cup cuuk824/Pulfrey 978 0 521 51460 6 December 25, 2009 21:51

6 2 Energy band basics

for our present purpose.1 The profile in Fig. 2.3d, comprising N delta-function potential
barriers spaced a apart, can be expressed as

U (x) = β

N−1∑
l=0

δ(x − la) , (2.2)

where δ(x) is the Dirac delta function and β is some constant.2

2.3 Schrödinger’s equation

When considering the fine details of an electron’s motion in a solid, we need to consider
its wave-like nature. The appropriate equation is the Schrödinger Wave Equation, which
was originally postulated in 1925 to provide a formal description of the experimentally
observed, discrete frequencies of light emission from an excited hydrogen atom. You can
have confidence in the equation because, in the intervening 80+ years, no experiments
have been reported that give results contrary to the predictions of the equation. The
form of the equation of interest to us here is the time-independent Schrödinger Wave
Equation, i.e., in one dimension,

− �
2

2m0

d2ψ(x)

dx2
+ U (x)ψ(x) = Eψ(x) , (2.3)

where m0 is the electron rest mass, ψ(x) is the position-dependent part of the electron
wavefunction �(x, t), U is the potential energy and E is the total energy.3

Thinking in terms of conservation of energy, it can be seen that the first term in
(2.3) must relate to kinetic energy. Often, the first two terms are grouped together and
described as the Hamiltonian of the system

Hψ = Eψ , (2.4)

where the Hamiltonian H operates on the wavefunction to describe the total energy of
the system.

Niels Bohr’s statistical interpretation of the wavefunction is particularly helpful in
getting a feeling for what � really is: � �∗dx ≡ |�(x, t)|2 dx is the probability of
finding the electron between x and (x + dx) at time t .4 If the electron is somewhere in x
(1-D case), then it follows that

∫ +∞
−∞ |�(x, t)|2 dx = 1. Equivalently,

∫ +∞
−∞ |ψ(x)|2 dx =

1. Thus, �(x, t) and ψ(x) enable us to compute the probability of finding an electron

1 If you insist on giving some physical significance to the potential profile in Fig. 2.3d, then you may wish
to view the electron as being largely confined to the vicinity of an atom, but having some probability of
tunnelling to a neighbouring, identical, region through a thin potential barrier.

2 The property of the delta function that is relevant here is: δ(y) = 0 if y �= 0, and δ(y) = ∞ if y = 0.
3 This equation follows from the full, time-dependent Schrödinger Wave Equation, which describes the

full wavefunction, i.e., in the 1-D case, �(x, t). In all our work we will take the potential energy to be
independent of time. This allows the full equation to be solved by the method of Separation of Variables, for
which solutions are simply: �(x, t) = ψ(x) f (t), where f (t) = exp(−i Et/�) and E = �ω. Thus, we can
solve (2.3) for ψ(x), and then always multiply by f (t) to get the full time dependence if we need it.

4 The superscript * denotes the complex conjugate.
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somewhere in space at some time. This is how quantum mechanics works: it deals in
probabilities. This is not an inadequacy of the theory; it is a description of how Nature
appears to work at the level of very tiny entities.

2.4 Energy bands

Consider the periodic delta-function potential in Fig. 2.3d. Here, we use it to develop an
understanding of energy bands, closely following the treatment of Griffiths [3]. In the
region 0 < x < a the potential energy is zero, so, from (2.3)

d2ψ

dx2
+ g2ψ(x) = 0 , (2.5)

where

g =
√

2m0 E

�
. (2.6)

The general solution is

ψ(x) = A sin(gx) + B cos(gx), (0 < x < a) . (2.7)

A and B are constants that need to be evaluated by considering the boundary conditions.
The general rules are:

� ψ must be continuous at a boundary;
� dψ/dx must be continuous at a boundary, except when the potential energy goes to

infinity.5

In our problem we have lots of boundaries, and at each one U → ∞. Fortunately, because
of the periodic nature of the potential, we can reach a solution quite easily by appealing
to Bloch’s Theorem, which states that for a periodic potential U (x + a) = U (x), the
solutions to Schrödinger’s equation satisfy

ψk(x) = uk(x)eikx , (2.8)

where uk(x) has the periodicity of the lattice, and the subscript k indicates that u(x)
has different functional forms for different values of the Bloch wavenumber k. Note
that if u is not periodic but is a constant, then the Bloch wave becomes a plane wave.
Therefore, a Bloch wave, given by (2.8), is a plane wave modulated by a function that
has the periodicity of the lattice. An alternative way of stating Bloch’s Theorem follows
from (2.8), namely

ψk(x + a) = eikaψk(x) . (2.9)

5 If there is a discontinuity in dψ/dx , then the kinetic-energy term in (2.3) → ∞, but the equation is still
satisfied if U → ∞. When we resort to the ‘Effective-mass Schrödinger Wave Equation’, the boundary
condition for the derivative of ψ must also include what we shall call the effective mass, if this property
changes across the boundary (see Section 2.11).
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Note that this equation does not state that ψk(x) is periodic, but it does lead to |ψk(x)|2
being periodic. The latter is comforting because one would expect an electron to have an
equal probability of being at any of the identical sites in the linear array. The periodicity
breaks down at the edges of the crystal, but that shouldn’t have a significant effect on
the electrons deep within the crystal if the array is very long compared to the separation
between atoms, i.e., if N , the number of primitive cells, is very large. Mathematically, we
can impose complete periodicity by bending the array into a circle so that x = −a follows
x = (N − 2)a in Fig. 2.3d. We then have a convenient, so-called periodic boundary
condition:

ψk(x + Na) = ψk(x) . (2.10)

Using this in (2.9), yields

eik Naψk(x) = ψk(x) , (2.11)

from which it is clear that

k = 2πn

Na
, (n = 0,±1,±2,±3, · · ·) , (2.12)

where n is an integer. (2.9) can now be used to obtain the wavefunction in the region
−a < x < 0 of Fig. 2.3d:

ψk(x) = e−ika[A sin g(x + a) + B cos g(x + a)], (−a < x < 0) . (2.13)

Now that we have expressions for the wavefunctions in adjoining regions we can use the
matching conditions for ψ and dψ/dx to evaluate or eliminate the constants A and B.
Matching the wavefunctions at x = 0 gives

B = e−ika[A sin(ga) + B cos(ga)] . (2.14)

Because of the delta function, the derivative of ψ is not continuous at x = 0, so we
need to find the discontinuity in order to get another expression linking A and B. For
U (x) = βδ(x), which comes from (2.2), the discontinuity is

�(
dψ

dx
) = 2m0β

�2
ψ(0) .6 (2.15)

Thus, it follows from the derivatives of ψ at x = 0 that

g A − e−ikag[A cos(ga) − B sin(ga)] = 2m0β

�2
B . (2.16)

6 To obtain this, integrate Schrödinger’s equation over a tiny interval spanning x = 0. The integral of the
d2ψ/dx2 term is precisely the discontinuity we seek. It is equal to the integrals over the Eψ and Uψ terms.
In the former term E is a constant and ψ is finite, so integrating over an infinitesimal interval gives zero.
The same would usually be true for the Uψ term, but because U = ∞ at x = 0, the integral is finite and
equals βψ(0), where we have used another property of the delta function:

∫ ∞
−∞ δ(x) dx = 1.
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Figure 2.4 Plot of (2.17) for
[

m0βa
�2

] = 10, showing the allowed values of ga, i.e., those within the
dashed lines. The forbidden values of ga lie in the areas outside the dashed lines.

From (2.14) and (2.16), after some manipulation, an expression devoid of A and B
results:

cos(ka) = cos(ga) +
[

m0βa

�2

]
sin(ga)

ga
. (2.17)

This key equation unlocks the secret of bands: the right-hand side is a function of ga,
and g is a function of the energy E from (2.6), but the left-hand side decrees that f (ga)
must be bounded by ±1. Thus, values of E are only allowed when −1 ≤ f (ga) ≤ 1.
This is illustrated by the plot of (2.17) in Fig. 2.4. Note that this figure is arbitrarily
truncated at g = 6π/a, but, in reality, g could be extended indefinitely; thus, there are
an infinite number of ranges of allowed energy, each one of which is called an energy
band.

The energy bands corresponding to the allowed values of ga, and the forbidden
regions (bandgaps) separating the bands, are usually displayed on a plot of energy E
versus Bloch wavevector k. The version shown in Fig. 2.5 is known as an extended-
zone plot. The first zone spans the range −π/a < k < π/a; the second zone is split
into two: −2π/a < k < −π/a and π/a < k < 2π/a; etc. Thus each zone extends over
a range of 2π/a in k. From (2.12), it is seen that the corresponding range in n is
N , the number of primitive calls. As the latter number will be usually very large in
semiconductor devices, the separation of neighbouring k values (=2π/Na), is so small
that the E-k relation appears continuous within a band.

An E-k plot is often interpreted as an energy-momentum relationship. This is because,
from (2.1), momentum can be written as �k, where � = h/2π is Dirac’s constant,
and k = 2π/λ is the general relationship between wavelength and wavevector. For the
specific case of a Bloch wavevector, �k is called the crystal momentum. The crystal
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Figure 2.5 ‘Extended-zone’ plot of energy (from Fig. 2.4 and Equation (2.6)) for the first five
allowed energy bands. For example, the first band of ga runs from ga = 0.83π to ga = 1.00π

(see Fig. 2.4). This range of ga values, and their negatives, are then used in (2.6) to obtain the
first allowed band of energies. The corresponding ka range for the first band is −π < ka < π .
The parabola shown by the dashed curve is the E-k relation for a free electron. Note how the
allowed bands become closer to this parabola as the energy increases, indicating the increasing
‘freedom’ of the higher energy electrons.

momentum is not the actual mechanical momentum of the electron: it is the momentum
of the electron due to the action of applied forces, as we show in Section 2.9.

2.5 Reduced-zone plot

An alternative way of displaying the E-k relationship is to compress all of its information
into the first zone. This is achieved by horizontally shifting each of the curves from the
higher order zones in the extended-zone plot by an appropriate multiple of 2π/a. For
example, consider the positive wavevectors in the 4th and 5th zones, i.e., 3π/a < k <

5π/a. Now, write the wavevector as

k = 4π

a
+ k ′ , (2.18)

where the new wavevector k ′ is constrained to −π/a ≤ k ′ ≤ π/a, i.e., to the first zone.
The Bloch wavefunction from (2.8) then becomes

ψk(x) = uk(x)ei4πx/aeik ′x

≡ u′
k(x)eik ′x

= ψk ′(x) . (2.19)
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Figure 2.6 Reduced-zone plot of energy (from Fig. 2.4 and Equation (2.6)), for the case of
N = 10. The ten crystal momentum states in each band are shown.

The terms exp(i4πx/a) and uk(x) have the same period a, so they have been amalga-
mated into a new periodic function u′

k(x). The changes to uk and to k are complementary
in that they leave the wavefunction unchanged. In our example, the shift in k of 4π/a
takes the band of the 4th zone (positive k) to the range −π/a < k ′ < 0, and the 5th band
to 0 < k ′ < π/a. The bands in the new scheme are completed by similar operations on
the corresponding, negative-k portions of the 4th and 5th bands from the extended-zone
plot. Similar actions, with translations of appropriate multiples of 2π/a, bring all of
the other bands into the first zone. The resulting plot is called a reduced-zone plot, an
example of which is shown in Fig. 2.6. The first zone, which now contains all the bands,
is called the first Brillouin zone, or often just the Brillouin zone. In the reduced-zone
plot �k is properly called the reduced crystal momentum.

2.6 Origin of the bandgaps

We have seen how energy bandgaps arise from a mathematical treatment of a periodic
structure. For a physical explanation, consider a beam of electrons of wavelength λ

propagating through our 1-D lattice, and imagine that there is scattering of the beam
from two neighbouring lattice sites. The two portions of the reflected beam would
reinforce constructively if the Bragg condition for normal incidence were satisfied, i.e.,

2a = bλ , (2.20)

where a is the spacing between lattice sites and b = 1, 2, 3, · · · is an integer. Further
Bragg reflections would lead to our beam bouncing around in the crystal, being reflected
back and forth, and taking-on the property of a standing wave, rather than that of a
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propagating wave. The wavevectors at which this would occur are

k = ±2π

λ
= ±bπ

a
≡ ±1

2
Gb . (2.21)

Thus, energy bandgaps, within which there are no propagating waves, open up at the
Brillouin-zone boundaries because of the strong Bragg reflection.

In (2.21), Gb = b2π/a is a set of multiples of 2π and the reciprocal of the lattice
spacing a. Collectively, the multiples are called reciprocal lattice numbers, and become
vectors in 2-D and 3-D systems. The translation numbers used to obtain the reduced-zone
plot from the extended-zone plot can now be seen to be reciprocal lattice numbers.

2.7 Quantum states and material classification

The reduced-zone plot of Fig. 2.6 has been drawn for the particular case of ten monovalent
primitive unit cells (N = 10). Because we are considering a reduced-zone plot, |kmax| =
π/a, so n is restricted, from (2.12), to |nmax| = N/2. The allowed values of ka/π (from
(2.12)) are, therefore: 0,±0.2,±0.4,±0.6,±0.8,±1.0. These are then used to solve
(2.17) for the corresponding ga, from which the allowed energies follow from (2.6). Each
circle on the plot of Fig. 2.6 corresponds to a particular value of n, the quantum number
defining the allowed values of k in (2.12). Thus, n designates a state of reduced crystal
momentum that can be occupied by an electron. Note that the end-values, n = ±N/2
in (2.12), are one and the same point, so that the total number of distinct n numbers in
the reduced-zone scheme is precisely equal to N , the number of points in our lattice of
primitive unit cells.

In fact, each reduced-crystal-momentum state can be occupied by two electrons,
providing that they have opposite spin. This is a manifestation of Pauli’s Exclusion
Principle, which observes that no two electrons can have the same quantum numbers.
The quantum number for electron spin is ± 1

2 and, so far, we have one quantum num-
ber (n) for the crystal momentum. In the reduced-zone scheme, where n is restricted
to values between −N/2 and N/2, we need another number to distinguish between
states with the same value of reduced wavevector, but with different values of energy.
This number is called the band index. In Fig. 2.6, the band index runs upwards from
1 to 5.

Thus, each band contains 2N states, where N is the number of primitive unit cells
that form the real crystal lattice. For the case of a primitive cell containing a single atom
that is monovalent, there will be N valence electrons. At temperature T = 0 K these
electrons will occupy the bottom half of the first band. If there were 2 valence electrons
per primitive cell, the entire first band would be occupied at 0 K. More generally, bands
will be either completely filled or completely empty if there is an even number of
electrons in the primitive unit cell. The highest fully occupied band at 0 K is called the
valence band, and the lowest unfilled band at 0 K is called the conduction band. The
energy gap between these bands is called the bandgap, and is designated Eg .
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When a band is completely full, a filled state with crystal momentum +�k is matched
by a filled state with crystal momentum −�k. Thus, there is no net crystal momentum.7

We have already alluded to the fact that crystal momentum is the electron momentum due
to external forces, such as an applied electric field: therefore, there can be no net motion
of charge carriers, i.e., no current, no matter how high the applied field is, provided the
electrons stay in the full band.

Now, let us put some thermal energy into the system by increasing T . In the monovalent
case the electrons can respond to this stimulus by moving into allowed states of higher
energy and crystal momentum within the half-full first band. If an electric field were
also applied, electrons could be accelerated into states of higher crystal momentum, and
there would be a current. This is the case for most metals.

In the divalent case, the only possibility for getting a net gain in crystal momentum
would be if some electrons could somehow acquire enough energy to cross the forbidden
energy bandgap and then populate some of the states in the empty second band, in which
they would then be ‘free’ to gain crystal momentum from an applied field. If this
bandgap is very large, it is unlikely that electrons can be excited into it, and so we have
an insulator. If the bandgap is not too large, some electrons can be excited into the
conduction band, and we have a semiconductor. Typically, useful semiconductors have
a bandgap in the range 0.5–3.5 eV.

For silicon, the dominant semiconductor material, the atoms are arranged in the
diamond lattice structure, as shown in Fig. 2.1, and the primitive unit cell comprises 2
atoms, each of which has 4 valence electrons. Thus, in the entire material there are 8N
valence electrons; at 0 K these would fill-up the first 4 bands. Therefore, in Si, the gap
between the 4th and 5th bands is the bandgap: its value is Eg = 1.12 eV at 300 K.

2.8 Band structure of real semiconductors

In our simple 1-D example, a reciprocal lattice number Gb was introduced, and its
magnitude was some multiple of 2π divided by the spacing between primitive unit
cells in a linear array. Thus, the reciprocal lattice number can be envisaged as residing
in reciprocal space, which, in this simple case, consists of a linear array of points
separated by 2π/a, where a is the spacing of primitive unit cells in the direct lattice,
or in real space. In 3-D, the primitive unit cell in real space becomes a volume, and we
have reciprocal lattice vectors which have a magnitude of some multiple of 2π divided
by the spacing between planes of atoms. The direction of the reciprocal lattice vector in
reciprocal space is perpendicular to that of the planes in real space [4].

The primitive unit cell in reciprocal space for the face-centred cubic lattice in real
space is a truncated octahedron (see Fig. 2.7). The Cartesian axes refer to directions of
the Bloch wavevector k. As stated above, these directions are perpendicular to planes
in the direct lattice, so it is reasonable to give them the same designation as is used for

7 Strictly speaking, if we are alluding to the reduced-zone plot, we should be talking about reduced crystal
momentum, but, for brevity, we don’t always make this distinction.
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Figure 2.7 The Brillouin zone, or the primitive unit cell in reciprocal space, for the real-space
face-centred-cubic lattice. Various symmetry points are labelled. Courtesy of John Davies,
University of Glasgow.
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Figure 2.8 Real-space diamond structure, with the (111) plane highlighted. Reproduced from
Pulfrey and Tarr [5].

the normals to crystal planes. The notation is that of Miller indices, and is illustrated
in Fig. 2.8 for the diamond/sphalerite structure. For example, in the natural Cartesian
coordinate system of the direct lattice, as illustrated in Fig. 2.1, the (100) plane intersects
the x-,y-,z-axes at a,∞,∞, respectively. The latter set becomes (100) by taking the
reciprocal of each intercept and reducing to integer values. The normal to this plane
is specified by the same set of numbers, but with a different parenthesis, i.e., [100].
Because the labeling of the axes is arbitrary, surfaces such as (−1,0,0) and (0,1,0)
should have exactly the same properties as (100) surfaces. Collectively, such surfaces
are denoted {100}, and equivalent normal directions as 〈100〉. Thus, in reciprocal space,
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Figure 2.9 Real band structure of four semiconductors widely used in transistors and diodes:
(a) Si, (b) Ge, (c) GaAs, (d) AlAs. From Davies [7, Fig. 2.16], C© Cambridge University Press 1998,

reproduced with permission. Original data from G.P. Srivastava, University of Exeter.

[100], for example, denotes the normal to the (kx , ky, kz)-surface that has intercepts
in reciprocal space of (G1,x ,∞,∞). On Fig. 2.7 this direction is from the origin of
k-space at the so-called 	-point out through the centre of the square surface at the
so-called X -point. These point symbols come from Group Theory. The other direction
of interest to us for the transistors and diodes discussed in this book is the [111]
direction, which passes from 	 to L at the centre of the hexagonal faces of the reciprocal
lattice unit cell; in the direct lattice it is the normal to the plane that is highlighted
in Fig. 2.8.

The band structure for the 3-D case is not as easily arrived at as in the 1-D case.
Numerical calculations are necessary, and a clear example of one particular method is
given by Datta [6]. Results of detailed calculations for some common semiconductor
materials are shown in Fig. 2.9. Note, firstly, the similarity around the 	-point of the
lowest three bands for all of these materials. These are the valence bands and they
are similar because they relate to the similar bonding coordination of the diamond and
sphalerite structures. In crystals of Si and GaAs, for example, the orbitals of the valence
electrons hybridize (3sp3 in Si and 4sp3 in GaAs). The lowest band retains some of
the symmetrical character of the atomic s-orbitals. The remaining valence bands are
more directional, and derive more from the three atomic p-orbitals. Only two higher
valence bands appear in Fig. 2.9 because the highest is actually two bands with the same
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E-k relationship: they are said to be doubly degenerate. Thus there are, in fact, four
valence bands, as required to accept the 8N electrons of the N primitive unit cells for
these materials. When the magnetic moment of the spinning electrons and the angular
momentum due to their orbital motion is taken into account, this spin-orbit coupling
lowers the energy of one of the degenerate bands: the splitting is slight in Si (0.04 eV)
and larger in GaAs (0.34 eV).

The conduction bands for Si and GaAs are noticeably different: the atomic-orbital-
character of the electrons is lost because the wavefunctions of the conduction electrons
are not required to yield a high probability density in the immediate locality of the atoms,
i.e., conduction electrons are ‘freer’ than valence electrons.

To construct a conduction band in the [100] direction, for example, start at the 	-
point and move through the zone to the X -point. There will be an energy gap at this
boundary of the zone, and a new conduction band will fold back into the zone, just as
we determined in our 1-D example. However, the 3-D situation is complicated by the
fact that bands in a particular zone can arise due to wavevectors arriving at the zone
boundary by various routes. For example, with reference to Fig. 2.7, starting at the origin
again, and moving to the K-point, proceeding to W and then to X would produce a state
at X with a different energy to that of the state arising from the direct path of 	-X .
Starting at this new state and then proceeding directly to 	 produces another band
in the [100] direction. Thus, the conduction-band structure is very complicated, with
overlapping bands and some degeneracies. Fortunately, the region of greatest interest
for the transistors and diodes considered in this book is centred around the bottom of
the lowest conduction band. In GaAs, this occurs at the 	-point, and is non-degenerate,
so the conduction band is isotropic in k-space. As the valence band extrema occur at the
same value of k, GaAs is said to have a direct bandgap. In Si, the lowest minimum of
the conduction bands occurs at a point that is about 80% of 1

2 G100, where G100 is the
reciprocal lattice vector for the first band in the [100] direction. Recall that its length is
2π divided by the spacing between (100) planes, which is a/2 in the face-centred cubic
structure, i.e., |k100|max = 2π/a. The band minimum does not occur at the same value
of crystal momentum as the extremum in the valence band: thus, Si is an example of an
indirect bandgap material.

Finally, in Fig. 2.7, focus on the point on the kx axis where the conduction-band
minimum occurs in Si. Now, move away from this point in any perpendicular direction.
The edges of the Brillouin zone are equidistant from the point in these perpendicular
directions, but the zone lengths are different from that in the 	-X direction. Thus, the
bottom of the conduction band in Si is anisotropic in k-space.

2.9 Crystal momentum and effective mass

In Section 2.5 we hinted at a relationship between an electron’s crystal momentum
and an external force that may be acting on it. Here, we derive this relationship and,
along the way, define the very useful concept of the effective mass of a mobile charge
carrier.
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Consider the 1-D case of an electron in either the conduction band or the partially
filled valence band and subject to an external force Fx, ext, which could be due to an
applied electric field E , for example.8 The electron gains energy from the field according
to

d E

dt
= Fx, ext

dx

dt
= Fx, ext vx , (2.22)

where vx is the velocity in the x-direction.
The question arises: what is the appropriate velocity? So far we have described

electrons in a crystal via Bloch wavefunctions. These tell us that the probability of
finding an electron at some point in a primitive unit cell is the same for all of the
primitive unit cells of the crystal. This is not too helpful if we wish to have a better idea
of where the electron is in the actual semiconductor device. We would expect to need
such information when considering the effect of external forces applied to an actual
semiconductor device. For example, whether a photo-excited electron is in the quasi-
neutral- or depletion-region of a solar cell is important to know regarding the likelihood
of that electron contributing to the photocurrent.9 While a single wavefunction doesn’t
give us precise spatial information about the electron, it does give us the electron’s
crystal momentum, via the wavevector k. By superposing waves of slightly different
k, a wavepacket can be constructed: the wider the range of k’s used, the more tightly
constrained in space the wavepacket will be, and the more the electron will appear to
have mass at a point, i.e., to be particle-like. The electron can then be treated classically,
and be endowed with a trajectory, which is obviously helpful when following an electron
through a device. Thus, the velocity to use in (2.22) is the velocity of the centre of the
wavepacket: the group velocity.

Recall that, from general wave theory, vgroup = dω/dk, where the angular frequency
ω is related to the energy by E = �ω. Therefore, in our case, where we have a 1-D Bloch
wavevector k in the x- direction,

vx = 1

�

d E

dkx
. (2.23)

Substituting into (2.22) and using

d E

dt
= d E

dkx

dkx

dt
, (2.24)

we arrive at

Fx, ext = d(�kx )

dt
. (2.25)

This is an amazing result: it tells us that �k behaves as the momentum for external
forces applied to an electron moving through a periodic structure! In other words, we
don’t have to know the actual, mechanical momentum of the electron, which will change
periodically in response to the crystal field. Instead, the response to an external force can

8 F = −qE for an electron.
9 The terms ‘quasi-neutral region’ and ‘depletion region’ are explained in Chapter 6.
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Table 2.1 Some band parameters for Si and GaAs. The effective masses are for T = 4 K,
and are taken from Pierret [8]. The values for A, B, and C are from Reggiani [9].

Eg m∗
e m∗

l m∗
t m∗

hh m∗
lh A B C

Semiconductor (eV) (m0) (m0) (m0) (m0) (m0)

Si 1.12 0.92 0.19 0.54 0.15 4.22 0.78 4.80
GaAs 1.42 0.067 0.51 0.08 7.65 4.82 7.71

be simply calculated from a consideration of only the time-dependence of the crystal
momentum.

To make use of this remarkable fact, consider the acceleration of the electron (again
using 1-D for simplicity)

ax = dvx

dt
= 1

�

d2 E

dk2
x

dkx

dt
= 1

�2

d2 E

dk2
x

d(�kx )

dt
. (2.26)

Using (2.25), leads to

ax =
[

1

�2

d2 E

dk2
x

]
Fx, ext . (2.27)

This equation has the familiar form of Newton’s Second Law of Motion, allowing us to
associate a mass, which is called the effective mass m∗(E), with the bracketed term in
(2.27), i.e., for our 1-D case

m∗
x (E) =

[
1

�2

d2 E

dk2
x

]−1

. (2.28)

Evidently, m∗(E) depends on the direction, and in multi-dimension systems is, in fact,
a tensor [2, p.66]. Also, because m∗(E) depends on the band structure, which depends
on the potential energy environment of the crystal, the effective mass is not expected to
be equal to the free-electron mass m0. Some values are given in Table 2.1 at the end of
Section 2.10.

To emphasize the key point of this section: an electron moving under the combined
influence of an externally applied force and the forces associated with the lattice ion
cores, responds to the external force just as if it were a free particle, but with a mass
that is determined by the band structure of the host material. This means that, once we
know the band structure of a semiconductor, we can compute m∗(E), and, thereafter, not
concern ourselves about the internal details of how the potential varies according to the
electron-ion core interactions.

2.9.1 Negative effective mass

From (2.28) we see that m∗(E) is positive at the bottom of bands, i.e., where the E-k
relation is concave upwards, and negative at the top of bands, where the E-k relation is
convex upwards. Let us deal with the conduction band first.
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Figure 2.10 Hole energy. (a) Excitation of an electron to a higher energy state in the valence band.
(b) After the excitation, the hole can be viewed as having gained energy, i.e., the hole energy
increases downwards. The x-variable is kx.

At the bottom of the conduction band m∗(E) is positive, so a positive force causes
a positive change in crystal momentum, i.e., the electron accelerates in the direction
of the applied force. However, as the electron moves up the band, it passes through a
crystal momentum state at which m∗(E) becomes infinite and, thereafter, is negative. The
transition from positive to negative effective mass marks the point where the acceleration
due to the external force is overcome by the increasing Bragg reflection of the Bloch
waves as the Brillouin-zone boundary is approached. In other words, the momentum
transfer from the applied force to the electron becomes less than the momentum transfer
from the lattice to the electron. As we point out in Section 4.1, the conduction-band
electrons usually don’t enter this part of the zone, so these electrons can usually be relied
upon to stay near the bottom of the band, and to accelerate in the direction of the applied
force.

In the valence band, however, it is the top of the band that is most important regarding
the motion of charge carriers. In order for there to be a net change in crystal momentum
of the elecrons in the valence band, there must be empty states in the band into which
the electrons can move. How such empty states can arise is discussed in Chapter 3, but
it can be appreciated that they will exist near the top of the band because the electrons
will tend to gravitate to their lowest possible energy states (see Fig. 2.10a). The empty
states near the top of the valence band are called holes. If an electron is somehow excited
into one of these empty states, an empty state will appear lower down in the band (see
Fig. 2.10b). This exchange can be thought of as giving energy to the hole, i.e., the hole
energy increases in the downwards direction of the E-k diagram, which is invariably
drawn from the perspective of electrons. This means that, from the hole point of view,
(d2 E/dk2) > 0, and the hole effective mass is positive near the top of the band. Thus,
holes accelerate in the same direction as the applied external force, just like ‘normal’
objects. For this reason, and for the fact that it is easier to keep track of the movement
of a relatively few number of holes, rather than of the large number of electrons in
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the valence band, we choose to designate charge conduction in the valence band as
being due solely to holes. The situation then becomes analogous to that near the bottom
of the conduction band, where there are positive-effective-mass electrons moving in a
predominantly empty band.

From now on, when we talk of conduction by electrons we are implicity referring to
the lower regions of the conduction band. The top of the valence band is the domain of
holes, and we consider them to represent the carriers of current in this band.

2.9.2 Hole polarity

Although the two types of charge carrier discussed above have positive effective mass,
they have a different polarity of charge. To see this, imagine that we have an intrinsic
semiconductor with a full valence band and an empty conduction band: the material is
neutral as the electron charge balances the charge of the atomic cores∫




(−qni,VB + q A) d
 = 0 , (2.29)

where q = 1.602 × 10−19 C is the magnitude of the electronic charge, ni,VB and A are
the concentrations of electrons in the valence band and of atoms, respectively, and 
 is
the volume of the material. Now, consider raising the temperature so that some electrons
are excited from the valence band to the conduction band. The new valence-band electron
concentration is n′

i,VB, and the charge equation becomes∫



(−qn′
iVB − qni + q A) d
 = 0∫




(q[A − n′
iVB] − qni ) d
 = 0∫




(qpi − qni ) d
 = 0 , (2.30)

where pi is the concentration of holes in the valence band and ni is the concentration
of electrons in the conduction band. Thus, a positive charge is associated with the
holes.

2.9.3 Parabolic-band approximation

Given that the regions of the E-k diagram near to the band extrema are of particular
importance, we can anticipate that it would be useful for analytical purposes if the
effective mass in these regions could be treated as a constant, rather than as being energy
dependent. Inspection of (2.28) informs that a parabolic E-k relationship would yield
such a constant effective mass. The E-k relationship for a free electron is truly parabolic,
i.e., E = (�k)2/2m0. By analogy, for electrons near the bottom of the conduction band,
and for holes near the top of the valence band, we write the kinetic energy as

E − Ê = �
2k2

2m∗ , (2.31)
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Figure 2.11 Fitting of parabolae to the extrema of the 4th and 5th bands of Fig. 2.6.

where Ê > 0 is the energy of the extremum of the appropriate band, and m∗ is a constant
near the extremum, and is called the parabolic-band effective mass.

As an example, let us apply the parabolic-band approximation to the 4th and 5th
bands from Fig. 2.6. The result is shown in Fig. 2.11, which gives an idea of the limited
applicability of the approximation. However, the parabolic-band approximation is very
useful because, in reality, it is in these regions that the charge carriers in which we are
interested are found most often. For example, consider the upper band of Fig. 2.11, and
imagine it to contain some electrons near the bottom of the band. If an electric field
is now applied these electrons will gain crystal momentum and move ‘up’ the band.
However, they will inevitably collide with the atoms of the lattice, thereby losing energy
and momentum, and be returned to states near the bottom of the band.

One further implication of the constant effective-mass description is that crystal
momentum states �k can be viewed as velocity states. The conduction band, for example,
can be envisaged as comprising electrons of higher and higher velocity as the band is
populated from the bottom. This picture will prove extremely helpful when considering
the injection of carriers into a semiconductor, and over various potential barriers in
transistors and diodes.

2.10 Constant-energy surfaces

In 3-D structures, the parabolic-effective-mass concept leads naturally to

E − EC0 = �
2

2

[
k2

x

m∗
x

+ k2
y

m∗
y

+ k2
z

m∗
z

]
, (2.32)
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Figure 2.12 The six equivalent constant-energy surfaces for some energy E > EC0 in the lowest
conduction band of Si. On the right is a detail of one of the constant-energy surfaces, showing
the longitudinal and transverse effective masses. From Davies [7, Fig. 2.19], C© Cambridge

University Press 1998, reproduced with permission.

where we have taken the example of the energy near the bottom of a conduction band
for which the extremum is the energy Ê = EC0.

From Fig. 2.9 for Si, it can be seen that EC0 occurs about 80% of the way towards the
X -points. In fact, because of the six-fold symmetry of the basically cubic lattice, there
are six equivalent X -points. With reference to Fig. 2.12, consider the energy minimum in
the direction to the right, and mark it as the kx -direction. Moving away from this energy
minimum in either of the two orthogonal directions, the same k-space environment is
encountered, but this environment is different from that in the kx -direction. Thus in
Si, m∗

y = m∗
z �= m∗

x . Usually, m∗
x is called the longitudinal effective mass (labelled mL

in Fig. 2.12), and the other two are called the transverse effective mass (labelled mT

in Fig. 2.12). Measurements of effective mass are obtained from cyclotron resonance
experiments performed at very low temperatures. Commonly accepted values for 4 K
are given in Table 2.1. The constant-energy surface around each of the six equivalent
conduction band minima is a prolate spheroid.

From Fig. 2.9 for the band structure of GaAs, it can be seen that EC0 occurs at the
	-point. This is the central point of the Brillouin zone and, with reference to the primitive
unit cell in reciprocal space for the diamond/sphalerite structure (Fig. 2.7), it can be seen
that moving away from this point in the kx -direction, traverses exactly the same k-space
environment as would be encountered on moving away from the 	-point in the other two,
orthogonal directions. Thus, for GaAs, at the bottom of the lowest conduction band, the
parabolic effective mass is isotropic, i.e., m∗

x = m∗
y = m∗

z . The actual value is 0.067m0.
Thus, in this case, the surface in k-space for some value of E > EC0 is a sphere centred
on the 	-point.

Turning now to the valence band, a complication arises in the cases of both GaAs
and Si inasmuch as there are two bands with the same minimum hole energy Ê = EV 0.
Due to this degeneracy, there are interactions between the electrons in each of the bands
near the extremum, and approximations for the band structure beyond the order of the
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Figure 2.13 Constant energy surfaces for holes in Si. Heavy holes on the left, and light holes on
the right. Courtesy of Parham Yaghoobi, UBC.

parabolic are necessary. It transpires that a good approximation is

E(k) − EV 0 = �
2

2m0

{
Ak2 ∓

√
B2k4 + C2(k2

x k2
y + k2

yk2
z + k2

z k2
x )
}

, (2.33)

where the + sign is for the light-hole band, i.e., the band with the greater convexity,
and the − sign is for the heavy-hole band. Values for A, B, and C for GaAs and Si are
given in Table 2.1. Examples of the constant energy surfaces are given in Fig. 2.13. The
shape depends strongly on the energy, but usually the surfaces are described as those of
warped spheres. Approximating them as actual spheres allows effective masses for the
heavy and light holes to be identified, and these values are often used in calculations.
Typical values for m∗

hh and m∗
lh at 4 K are given in Table 2.1.

2.11 Effective-mass Schrödinger equation

As we have seen in Section 2.9, useful information about the band structure of a
crystalline material is distilled into a single parameter, the effective mass m∗(E). Here, we
state how the parabolic-band effective mass m∗ can be incorporated into the Schrödinger
Wave Equation, thereby simplifying this formidable equation in situations where the
potential energy is a superposition of that due to the periodic lattice UL and some
macroscopic, engineered potential energy UM . Examples of the latter are: the potential
energy due to an applied electric field; the potential energy due to a variation in ionized
impurities in the crystal, such as occurs in a p-n junction.

In the presence of this additional potential energy UM (x), the time-independent
Schrödinger Wave Equation from (2.3) becomes

[
− �

2

2m0

d2

dx2
+ UL (x)

]
ψ(x) + UM (x)ψ(x) = Eψ(x) , (2.34)
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where the square brackets denote the Hamiltonian for a single electron moving
through a perfectly periodic crystal lattice, in which it experiences only the potential
energy UL .

The equation we now present assumes that the conduction-band energy can be
described by a parabolic relationship

Eν(k) = EC0 + �
2k2

2m∗ , (2.35)

where EC0 is the energy at the bottom of the band, and ν is the band index.10 The new
equation takes the microscopic details of the semiconductor into account via m∗ and
EC0, and it is called the single-band, effective-mass Schrödinger Wave Equation:[

− �
2

2m∗
d2

dx2
+ UM (x)

]
F(x) = (E − EC0)F(x) , (2.36)

where F is the envelope function of the actual wavefunction ψ ; the two functions can
be approximately related by

ψ(x) = uk0(x)F(x) , (2.37)

where u0 is the periodic part of the Bloch wavefunction, evaluated at the bottom of the
conduction band, at which we have taken the Bloch wavevector to be k0.

The conditions under which (2.37) is a reasonable solution to (2.34) are [10]:

� Only one band is involved. This will obviously have to be relaxed for the valence band,
at the top of which both heavy and light holes are present in separate bands.

� uk is independent of k in the neighbourhood of k0. This condition stems from the
need to attribute most of the variation in k of the Bloch wavefunction in the perfectly
periodic case to the plane-wave part of the wavefunction.

� F(x) varies slowly with x , i.e., when compared to the spatial variation of the potential
energy UL (x) due to the periodicity of the crystal.

� The parabolic-band effective mass is applicable. This means that electron energies
must be restricted to near the bottom of the conduction band.

� Information on the atomic-scale variation of the electron concentrations is not needed.
This is because the sum of the probability densities of all the electrons

∑
F(x)F∗(x)

involves the envelope functions, which produce a smoothed-out version of the true
electron concentrations. The latter would be obtained from

∑
ψ(x)ψ∗(x), which

would include atomic-level information, either by the use of the Bloch function in
(2.37) after solving the effective-mass equation, or by direct use of the full-wave
equation (2.34).

Despite this seemingly very restrictive set of conditions, the single-band, effective-mass
equation is widely employed, and can give insightful results, even when not all of the
above conditions are strictly satisfied.

10 From hereon, we assume we are talking about the lowest band, so ν = 1 and we drop the band index.
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2.11.1 Boundary conditions for the effective-mass equation

The effective-mass Schrödinger equation can be recast as

− �
2

2

d

dx

(
1

m∗(x)

d F

dx

)
+ EC (x)F(x) = E F(x) , (2.38)

where EC (x) = UM (x) + EC0 is defined following (2.41). No a-priori reason can be
given for the greater correctness of this form of the equation than that of (2.36), but a
posteriori there is good reason to choose (2.38): it suggests a boundary condition for
the derivative of F that correctly conserves current (see Exercise 5.14). The boundary
condition in question, taken to apply to the interface at x = 0 between two regions (1
and 2), is

1

m∗
1(x)

d F1

dx

∣∣∣∣
x=0

= 1

m∗
2(x)

d F2

dx

∣∣∣∣
x=0

. (2.39)

The boundary condition for the envelope function itself is the same as for a true wave-
function:

F1(0) = F2(0) . (2.40)

These boundary conditions are used elsewhere in the book when tunnelling is examined.

2.12 Energy-band diagram

The band structure of a semiconductor gives information of the energy in k-space. Often,
in diodes and transistors, we need information of the energy variation in real space. To
convey this concisely, we return to the expression (2.35) for parabolic energy bands, and
add to it the macroscopic potential energy

E = UM (x) + EC0 + �
2k2

2m∗

≡ EC (x) + �
2k2

2m∗ , (2.41)

where EC is the position-dependent conduction band potential energy, or, as it is
usually called, the conduction-band edge.11 With this interpretation, �2k2/2m∗ becomes
the kinetic energy of electrons in the conduction band.

It is now possible to convey the spatial variation of Eν(x) for the lowest conduction
band by simply drawing EC (x), and imagining that energies above it at any position
x represent the kinetic energy of electrons at that point. The resulting plot is called
an energy-band diagram. The relationship between it and the parabolic dispersion
relationship is illustrated in Fig. 2.14. The example is for the case of a uniform electric
field, which would cause a linear change in the macroscopic potential energy UM (x).

11 EC differs from the electrostatic potential energy by a material constant called the electron affinity, as we
show in Chapter 6.



P1: Trim: 174mm × 247mm Top: 0.498in Gutter: 0.664in

pulfrey_cup cuuk824/Pulfrey 978 0 521 51460 6 December 25, 2009 21:51

26 2 Energy band basics

H
ole K

E

H
ole K

E

E
le

ct
ro

n 
K

E

E
le

ct
ro

n 
K

E

Position  

0

0

0

0

Wavenumber

Wavenumber

E

VE

CE

g

Figure 2.14 Representation of the relationship between the band structure and the energy-band
diagram. The example is for the case of a homogeneous semiconductor in a uniform electric
field. The change in potential is conveyed by a spatial change in the conduction- and
valence-band edges, EC (x) and EV (x), respectively.

2.13 From microscopic to macroscopic

We have come a long way in this chapter. We started by treating the electron as a wave
and by considering the microscopic nature of the semiconductor crystal in which the
electron moves. This led to energy-wavevector plots and the concept of allowed states
of crystal momentum in bands of energies separated by energy bandgaps. We ended by
distilling the microscopic details into an effective mass and an energy band edge. This
led to energy-position plots, and the prospect of being able to view the electron more
classically as it moves through a device in response to external, macroscopic forces.

We take advantage of this macroscopic viewpoint whenever possible in the following
chapters. However, its underlying microscopic basis should always be kept in mind,
and there is no alternative to the microscopic viewpoint when considering events that
are important in some devices, for example, photon absorption in solar cells, photon
generation in LEDs, tunnelling and strain-engineering in MOSFETs, carrier confinement
in HJFETs and carrier transport in 1-D nanotransistors.

Exercises

2.1 Consider Fig. 2.2. Remove the middle rows of atoms so that the resulting structure
is no longer face-centred rectangular, but is simply rectangular. Construct the
primitive unit cell for the new lattice. What is the basis?

2.2 Electrons propagating through periodic structures can be represented by Bloch
functions.
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Show that these functions properly account for the fact that an electron must
have equal probability of being in any of the identical primitive unit cells in a
perfectly crystalline material.

2.3 A new 1-D material, A, has N primitive cells/unit length, 1 atom/primitive cell
and 1 valence electron/atom.

Another new 1-D material, B, has N/2 primitive cells/unit length, 2 atoms/
primitive cell and 1 valence electron/atom.

Which of these two materials is a semiconductor?
2.4 Consider a simple 1-D semiconductor crystal comprising 6 primitive cells

separated by a distance a. Each primitive cell contains a single atom; each atom
has 4 valence electrons.

Make a rough sketch of the reduced-zone representation of the band structure.
Identify the conduction band and the bandgap.

2.5 Compute the number of atoms per unit area on the (100) and (111) surface planes
in the silicon lattice.

This information is relevant to devices where surface conditions are important,
as in MOSFETs, for example.

2.6 Search beyond this book for a drawing of the primitive unit cell for a real-space,
3-D, body-centred, cubic lattice.

Compare this unit cell with that shown in Fig. 2.7 for the primitive unit cell in
reciprocal space of a face-centred cubic lattice.

Sketch how these primitive unit cells nest together to fill up all of real space or
reciprocal space.

2.7 In Section 2.8 we showed that |k100|max = 2π/a for the Brillouin zone of Fig. 2.7
for a face-centred cubic real-space lattice of lattice constant a. This length is the
distance between 	 and X in the direction � on the figure. Show that the distance
	 to L in the direction � in Fig. 2.7, which is |k111|max, is

√
3π/a.

The difference in the two vector lengths is evident from the x-axis of the
band-structure plots of Fig. 2.9.

2.8 The E-k relationships for the conduction bands of two semiconductor materials,
A and B, each with spherical constant-energy surfaces, can be expressed as

E A = αk2 and EB = 2α(k − k ′)2,

respectively, where α is a constant and k ′ > 0.
Which material has the higher electron effective mass?

2.9 Fig. 2.10b shows the valence band of a semiconductor with one unoccupied state
below the top of the band.

If a positive electric field Ex is now applied, will the empty state move first to
a position of higher hole energy or lower hole energy?

2.10 Write a short program (a .m MATLAB file, for example) to plot your own version
of Fig. 2.4 from (2.17). For your numerical answer use [m0βa/�

2] = 4, rather
than the value of 10 used in the text.

Plot the figure.
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2.11 Imagine that your plot from the previous question applies to a material with a
lattice constant of 0.5 nm, and a primitive unit cell that has a basis of 2 atoms,
each of which has 2 valence electrons.

Estimate the bandgap of this material in eV.
2.12 The ga values for the first 5 allowed bands from Fig. 2.4 are listed in the table

below. This data was used to generate Fig. 2.6.
(a) Plot your own version of this reduced-zone plot, and recall that

[m0βa/�
2] = 10 in this case.

(b) Imagine, that this plot applies to a material with a primitive unit cell that has
a basis of 2 atoms, each of which has 2 valence electrons.

Show a parabolic fit to the valence band, and give your estimate (in units of m0)
of the parabolic-band effective mass for holes.

ka/π 0 0.2 0.4 0.6 0.8 1.0

ga1/π 0.8364 0.8500 0.8871 0.9367 0.9814 1.0000
ga2/π 2.0000 1.9637 1.8804 1.7887 1.7171 1.6984
ga3/π 2.5678 2.6099 2.7112 2.8343 2.9475 3.0000
ga4/π 4.0000 3.9331 3.7981 3.6533 3.5285 3.4723
ga5/π 4.3988 4.4681 4.6105 4.7701 4.9205 5.0000

2.13 In the previous question a value for the parabolic band effective mass was found
by curve fitting. Here, an analytical approach is to be used via an expansion of
(2.17) about the valence-band extremum.

Take the first two terms of the cosine expansion on the left-hand side of the
equation, and perform a Taylor Series expansion to first-order of the right-hand
side of the equation.

Making use of (2.6), show that

m∗
h

m0
= −1

g∗a

[
sin g∗a − A

(
cos g∗a

g∗a
− sin g∗a

(g∗a)2

)]
, (2.42)

where g∗a is ga at the extremum, and A ≡ [m0βa/�
2] = 10.

Compare your result with that from the previous question.
If the discrepancy bothers you, use your value for m∗

h from this question to
make a new parabolic curve, and compare this with the ‘true’ band as given by
the ga data in Exercise 2.12. The discrepancy should be seen to be merely due to
how far away from the extremum you wish the parabolic fit to extend.
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3 Electron and hole concentrations

From the previous chapter we learned that the mobile charge carriers in a semiconductor
can be categorized as electrons in the conduction band and holes in the valence band.
The carriers occupy states, which define their energy and crystal momentum. One of
the objectives of this chapter is to determine the density of these states in energy or
momentum, as well as the densities of the carriers in real space. We begin, however,
with a look at how the mobile carriers are created and destroyed.

3.1 Creation of electrons and holes

The four mechanisms by which electrons (in the conduction band) and holes can be
created in the devices discussed in this book can be classed as thermal, optical, electrical,
and chemical.

3.1.1 Thermal generation

For temperatures T > 0 K, the lattice atoms vibrate about their mean positions. Occa-
sionally, the local amplitudes of vibration are sufficient to break a valence bond, i.e.,
to release an electron from the valence band. Obviously, in a perfectly periodic crystal,
the energy gained by the electron must be sufficient to promote the electron into the
conduction band, as there are no available states elsewhere. The situation is illustrated
in Fig. 3.1, where an electron from state 〈1〉 in the valence band is promoted to state 〈1′〉
by the absorption of phonons.

A phonon is a quantum of lattice vibrational energy. The lattice vibrations travel
through the material as waves because the random vibrations of each atom are coupled
to neighbouring atoms by the bonding forces. In Fig. 3.2a this interatomic coupling is
represented by springs. However, the crystal lattice, being a mechanical structure, can
only vibrate in specific modes. Examples of two vibrational modes are shown in Fig. 3.2.
The displacements of the atoms are in the direction of the chain of atoms, so they are
called longitudinal modes. The associated phonons are termed acoustic and optic,
depending on whether the displacements of neighbouring atoms are in-phase (Fig. 3.2b)
or out-of-phase (Fig. 3.2c), respectively. If the atoms are allowed to vibrate in the two
directions perpendicular to the direction of the atomic chain, the dispacements give rise
to transverse modes [1]. Again, acoustic and optic phonons are possible.

30
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(a) (b)

〈1′〉

〈1〉

EC

EV

Figure 3.1 Representation of thermal generation of an electron-hole pair, (a) on an E-k plot, (b) on
an energy-band diagram. The square waves are a symbolic representation of phonons of different
frequency. The arrows pointing towards the band structure denote absorption.

(c)

(b)

(a)

Figure 3.2 Examples of atomic displacements in a 1-D array in which the unit cell comprises a
light atom (open circle) and a heavier atom (shaded circle). (a) Representation by springs of
interatomic coupling. (b) The displacements of the light and heavy atoms are in-phase. This
gives rise to longitudinal acoustic phonons. (c) The displacements of the two atoms are
out-of-phase. This gives rise to longitudinal optic phonons.

In real 3-D crystals, the periodicity of the lattice imparts a band structure to phonons
that has some similarities with that of electrons. The energy-momentum dispersion
relationships for phonons in Si and GaAs are sketched in Fig. 3.3 for a particular
direction. For these basically cubic materials the two transverse modes are the same,
i.e., they are doubly degenerate, so we see only four branches in the band structure of
Fig. 3.3, not six. Note that the frequencies are higher in Si than in GaAs because of the
former’s lighter atomic mass.

The elements of the phonon band structure (allowed bands (branches), bandgaps,
reduced-zone representation) can be readily obtained by first viewing the displacements
as constituting travelling waves of the form

una = A exp[i(βna − ωβ t)] , (3.1)
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Figure 3.3 Phonon spectra for Si and GaAs. From Davies [2], C© Cambridge University Press 1998,

reproduced with permission.

where una is the displacement of the nth atom in a chain of atoms with spacing a, β is
the phonon wavevector and ωβ is the radian frequency. Secondly, the spring represen-
tation of Fig. 3.2a can be used to formulate the equations of motion for this system of
interconnected atoms. The allowed phonon energies (frequencies of vibration) predict
acoustic and optic modes and, in the case of diatomic unit cells comprising atoms of
different masses, bandgaps at the zone boundary [2, pp. 70–75].

Returning now to electron-hole-pair generation, let us take the thermal generation
event in Fig. 3.1 to have occurred in silicon. Thus, the electron must have gained energy
at least equal to that of the bandgap, i.e., 1.12 eV. A glance at Fig. 3.3 tells us that phonons
have much lower energies than this; therefore, many phonons must be simultaneously
absorbed for the electron to be excited to the conduction band. The likelihood of this
happening is not great, so the number of electrons and holes produced in this way
will be much smaller than the number of electrons in the valence band.1 The latter
is about 2 × 1023 cm−3 for silicon, while the former is around 1 × 1010 cm−3 at room
temperature, and is assigned the label ni , where the subscript i refers to intrinsic material,
i.e., this thermal process is intrinsic to the material, and occurs irrespective of any other
methods of excitation. Thus,

ni = pi , (3.2)

where pi is the concentration of holes created by this process.
The conservation of energy alluded to above can be expressed as

[Ee〈1′〉 − Ee〈1〉] −
∑

�ωβ = 0 , (3.3)

i.e., energy is gained by the electron at the expense of the overall phonon energy, or, the
electron absorbs the energy of many phonons.

1 The density of atoms in a material is given by the product of Avogadro’s number and the material density,
divided by the gram molecular weight. For Si, the value is 5 × 1022 atoms/cm3. Each atom has 4 valence
electrons.
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(b)(a)

EC

EV

〈1″〉

〈1′〉

〈1〉

Figure 3.4 Representation of optical generation of an electron-hole pair, (a) on an E-k plot, (b) on
an energy-band diagram. The sine wave indicates absorption of a photon. Instances of phonon
absorption and emission are also shown.

Momentum must also be conserved during the process. This can be expressed as

[�ke〈1′〉 − �kh〈1〉] −
∑

�β = 0 . (3.4)

The requirements of conservation of both energy and momentum determine the number
and type of phonons that participate in the absorption process. Obviously, in the energy-
band diagram representation of the event in Fig. 3.1b, information of the momentum
exchange is not conveyed.

3.1.2 Optical generation

Generation of an electron-hole pair by absorption of optical energy is illustrated in
Fig. 3.4. The energy- and momentum-balance equations are

Ee〈1′〉 − Eh〈1〉 = �ωphoton +
∑

�(ωβa − ωβe )

�ke〈1′〉 − �kh〈1〉 = �kphoton +
∑

�(βa − βe) , (3.5)

where βa and βe are the wavevectors of phonons that are either absorbed or emitted,
respectively. Phonons need to be involved if the electron transition involves a momentum
change because photons carry very little momentum, as can be readily verified from

kphoton = E

�

nr

c
, (3.6)

where c is the velocity of light in vacuum and nr is the refractive index of the semi-
conductor. For a 1.12 eV photon in Si, for example, kphoton ≈ 3 × 106 m−1. Contrast this
with the wavevector difference between an electron at the top of the valence band at
the 	-point and one at the conduction band minimum, which is at ≈0.8 × 2π/a in Si.
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(a) (b)

EC

EV

〈1′〉

〈2′〉

〈2〉

〈1〉

Figure 3.5 Representation of impact-ionization generation of an electron-hole pair, (a) on an E-k
plot, (b) on an energy-band diagram. The energy from the electron transition 〈1〉 → 〈1′〉 is
absorbed by the lattice and promotes an electron from state 〈2〉 to 〈2′〉. In (b), X marks the
position of the impact-ionizing collision.

The difference in wavevector is ≈1010 m−1. Clearly this cannot be met by the photon,
so phonons must be involved in the transition.

In a direct bandgap material, interband electron transitions at energies near the bandgap
need not involve any momentum change, so phonons need not be involved. It follows
that photon absorption in direct bandgap materials occurs more readily than in indirect
bandgap materials. However, the fact that silicon is widely used in solar cells and
photodetectors indicates that absorption can be strong in indirect bandgap materials.
This is because, for photon energies near to Eg , as shown in Fig. 3.4, the phonons
involved need not have much energy (only momentum), and there are many acoustic
phonons of this type available.2

3.1.3 Electrical generation

Generation of an electron-hole pair by the impact ionization of a lattice atom is illus-
trated in Fig. 3.5. A high-energy electron collides with a lattice atom, and there is a
transfer of kinetic energy and momentum to the atom. If the energy involved is ≥Eg ,
then an electron can be ‘freed’ from the valence band, creating another electron in
the conduction band, and leaving behind a hole in the valence band. The energy- and

2 The average number of phonons in a vibrational mode of frequency ωβ follows from the statistical mechanics
of a set of harmonic oscillators, and is given by 〈nβ 〉 = 1/[exp(�ωβ/kB T ) − 1], where kB is Boltzmann’s
constant. Thus, low-energy phonons are very numerous. Another way of realizing this is to appreciate that
phonons are bosons and, therefore, are not restricted by Pauli’s Exclusion Principle to single occupancy of
a state. Thus, many phonons can be expected to be found in the lower energy states.
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(b)
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+

〈1′〉

〈2′〉

〈1〉

〈2〉

Figure 3.6 Generation of carriers by doping: electrons from donors, and holes from acceptors. The
energy between the dopant ground state and the appropriate band edge (conduction band edge
for donors and valence band edge for acceptors) is the ionization energy for the dopant.

momentum-balance equations are

[Ee〈1′〉 − Ee〈1〉] + [Ee〈2′〉 − Eh〈2〉] = 0

[�ke〈1′〉 − �ke〈1〉] + [�ke〈2′〉 − �kh〈2〉] = 0 . (3.7)

Usually, electrons are confined to the lower energies of the conduction band by frequent
collisions with atoms, defects, and any impurities in the lattice. However, if an electron
is rapidly accelerated by an applied electric field, as is assumed to have happened in
Fig. 3.5b, it could gain sufficient energy between collisions for impact ionization to
occur. It is because of this electric-field origin of the kinetic energy that we give the
label of “electrical generation” to this electron-hole-pair generation mechanism. It can
lead to avalanche breakdown, as we discuss in Section 16.1.

3.1.4 Chemical generation

In chemical generation, either an electron or a hole is created by the substitution of a
lattice atom with an appropriate impurity atom. In Si, for example, as it is a Group IV
element, the addition of an element from Group V could create a ‘free’ electron, i.e.,
one that is not needed for bonding purposes. Contrarily, the incorporation of a Group III
element would make the valence band deficient in electrons, i.e., a hole would be created.
The controlled addition of impurities is known as doping. The doping is effective in
creating extra electrons or holes if the ionization energy of the dopant is sufficiently
small for charge exchange between the dopant atom and the energy bands to occur. Such
is the case illustrated in Fig. 3.6.

Typical dopants used in Si devices are phosphorus and boron. These atoms have
suitably low ionization energies (≈0.04 eV) for the dopant atom to have a very high
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probability of being ionized at room temperature. Additionally, these atoms have similar
atomic masses to that of Si, so they can be accommodated in the host lattice without
severely disrupting the local crystallinity.3 Semiconductors doped with a few parts per
million of certain impurities can have electron and hole concentrations that are markedly
different from those in intrinsic material at the same temperature. In such cases the
material is said to be extrinsic. It takes considerable energy to force a foreign atom into
a lattice site, so doping usually involves a high-temperature process, such as diffusion,
or a high-energy process such as ion-implantation [3]. In silicon, these procedures are
performed on thin wafers, now as large as 300 mm in diameter, which are cut from single
crystal boules that are pulled from molten silicon at about 1400◦C, and can be several
metres in length. An appropriate dopant is usually added to the melt so that the boule
itself is extrinsic silicon.

In the energy band diagram on the right of Fig. 3.6 the dopant placements are shown
as separate, short lines, to indicate their localized nature. For example, the dopant
separation in silicon would be about 100 lattice points in any direction for a doping
density of about 1017 cm−3. At such large separations, there is no overlap between the
wavefunctions of the electrons associated with the dopants, so there is no corresponding
energy band with a range of permissible electron energies and momenta.4 Thus, it is not
strictly correct to represent dopants on an E-k diagram. Nevertheless, we have attempted
to do so in Fig. 3.6a. The energy balance relation is straightforward

[Ee〈1′〉 − Ee〈1〉] ≥ Ea , (3.8)

where Ea is the ionization, or activation, energy. However, the momentum balance
relation is ill-defined because crystal momentum relates to Bloch waves, which are
relevant to periodic structures, and this periodicity doesn’t apply in the neighbourhood
of a dopant. A dashed line has been drawn on Fig. 3.6a to emphasize this lack of
knowledge of the precise momentum. Some measure of the uncertainty in momentum
can be obtained from Heisenberg’s Uncertainty Principle

σx σp ≥ �/2 , (3.9)

where σx is the standard deviation in position, and σp is the standard deviation in momen-
tum. Obviously, if the electron is highly localized, there must be a large uncertainty in
its momentum.5 Suffice to say that the dopant atom is localized to an extent that allows
satisfaction of any momentum-change requirements for the transfer of an electron to the
conduction band.

Thus, the phosphorus atom in the example that we have been considering acts as a
donor: it donates one electron to the conduction band. In so doing it becomes a positive

3 Crystalline defects are not wanted as they tend to encourage recombination.
4 For very high doping densities, i.e., about 1020 cm−3, the wavefunctions of the electrons in each dopant

might overlap and cause a band of energies slightly below, or perhaps overlapping with, one of the band
edges of the host material. The result can be a reduction in Eg ; the phenomenon is known as bandgap
narrowing.

5 You can quantify this by doing Exercise 3.5, which shows how the uncertainty in momentum can explain
how light emission is possible from an indirect bandgap material.
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ion. So the material remains, overall, electrically neutral. Note, no hole is created, and
the ion is stationary at normal temperatures, so the only new conducting entity is the
electron. Thus, in this material n > p; the electron becomes the majority carrier, and
the preponderance of negatively charged carriers leads to the label of n-type. Phosphorus
and arsenic are the two donors most commonly used in silicon processing. In the III-V
compound semiconductor GaAs, useful donors are silicon (Group IV), which substitutes
for gallium, and selenium (Group VI), which substitutes for arsenic.

To make extra holes in silicon, a Group III element is introduced substitutionally.
Boron is most commonly used for this purpose. In GaAs, zinc (Group II) is used in
place of gallium, and silicon in place of arsenic. In the boron case, for example, the
three valence electrons of this small dopant are insufficient to satisfy the full bonding
requirements of the the four neighbouring silicon atoms that surround it. This deficiency
in bonding can be repaired by the acceptance of a valence electron from elsewhere in
the valence band. A small amount of energy is required to do this because the accepted
electron is surplus to the needs of the boron atom, and, therefore, a small repulsive
force has to be overcome. Once the electron has been accepted, the boron becomes a
negative ion, and a new hole appears elsewhere in the valence band. Again, the ion is not
mobile at the normal operating temperatures for a transistor or diode, so the boron-doped
material has extra positively charged current carriers in the form of holes, and is labelled
as p-type material. The boron atom is referred to as an acceptor. A representation of
acceptor doping on energy diagrams is given in Fig. 3.6. The situation is analogous to
that described for donors.

Because some thermal energy is required to ‘free’ the fifth electron from the P atom
and to accept a fourth electron into the vicinity of the B atom, it can be anticipated
that not all the dopant atoms are necessarily ionized at room temperature. However,
for P and B in Si, the ionization energies are sufficiently low that complete ioniza-
tion is a reasonable approximation to make for the normal operating temperatures of
Si devices. We make this assumption in this book. Thus, the concentration of donor
and acceptor ions, N+

D and N−
A , respectively, can be taken as known, i.e., equal to

the dopant concentrations (ND and NA) that are deliberately and precisely introduced
during the wafer- or device-processing steps in the fabrication of a semiconductor
device.

3.2 Recombination

Electrons that have been excited into the conduction band by any of the mecha-
nisms just discussed will have a tendency to lose energy by ‘falling into’ holes in
the valence band. This process is called recombination, and the four mechanisms of
relevance to the devices treated in this book are: band-to-band (or radiative) recombina-
tion, recombination-generation-centre recombination, Auger recombination and surface
recombination. We’ll consider the first three, which are bulk-recombination mechanisms,
in the following sections. Surface recombination is particularly relevant to solar cells,
and is discussed in Section 7.4.1.
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(b)(a)
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〈1〉

Figure 3.7 Band-to-band recombination.

3.2.1 Band-to-band recombination

Band-to-band recombination is the inverse of optical generation, and is illustrated in
Fig. 3.7 for the case of a direct bandgap material. The energy lost by the electron usually
creates a photon, resulting in light emission, rather than phonons, which would result
in heating of the lattice. Thus, this type of recombination is often called radiative
recombination. Phonons are not usually involved because their energies are small (see
Fig. 3.3), and while the electron in the conduction band is waiting for 20 or more phonons
to be simultaneously emitted, as would be required for a direct band-to-band transition
in GaAs, a single photon is created instead.

The rate of recombination Rrad depends on there being both electrons and holes
present, thus

Rrad = Bnp , (3.10)

where B is the radiative recombination coefficient, and n and p are the electron
and hole concentrations, respectively. For a direct bandgap material such as GaAs,
B ≈ 10−10 cm3s−1. For an indirect bandgap material such as Si, B ≈ 10−14 cm3s−1.
Radiative recombination is much less likely to occur in indirect bandgap materials
because of the need to involve phonons in the process in order to take up the change in
crystal momentum.

The energy- and momentum-balance equations for the transition in direct bandgap
materials are

Ee〈1〉 − Ee〈1′〉 = �ωphoton

�ke〈1′〉 − �ke〈1〉 ≈ 0 . (3.11)
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(a) (b)
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EV

〈1′〉

〈1〉

Figure 3.8 RG-centre recombination. The momentum is indeterminate, as in Fig. 3.6, so the
state of the recombination-generation centre cannot be identified. The second step in the
recombination process can be thought of as hole capture.

3.2.2 Recombination-generation-centre recombination

The recombination-generation (RG)-centre process takes advantage of the fact that
crystals are rarely perfect. In practical crystalline materials, a few atoms will be missing
from their regular lattice sites, and there will also be some distortion of the lattice in
the vicinity of impurity atoms. Recall from Chapter 2 that perfect periodicity gives
rise to energy bands and bandgaps. So, the presence of crystalline defects disturbs the
periodicity of the structure and is manifest as localized energy levels within the bandgap.
However, unlike the localized levels of deliberately introduced donors and acceptors, the
energy levels of defects and gratuitous impurities are not confined to energies close to the
band edges: they are distributed throughout the bandgap. The presence of these ‘stepping
stones’ facilitates the recombination process by providing temporary (metastable) states
for electrons. Each transition involves fewer phonons than would be required for band-
to-band recombination in one step, and, consequently, is more likely to occur. Energy
levels near to the middle of the bandgap (see Fig. 3.8) are most effective as recombination
centres because the events of capture of electrons from the conduction band and of holes
from the valence band are similarly probable.6

The analysis of this type of recombination event was first carried out by Hall [4] and
by Shockley and Read [5], and is often referred to as Shockley-Read-Hall- or, simply,
SRH-recombination. The intragap centres are usually treated as having a single (ground-
state) energy level but, in reality, excited states will be present, thereby further reducing
the number of phonons that have to be involved in any one transition, and, consequently,

6 Shallow energy levels, i.e., ones close to the band edges, are not so efficient recombination centres because
a captured carrier is more likely to be emitted back to its host band, than it is to be emitted into the other
band.
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(a) (b)

EV

EC

〈1′〉

〈2′〉

〈1〉

〈2〉

Figure 3.9 Auger recombination in an n-type semiconductor. The energy released by the transition
〈1〉 → 〈1′〉 is absorbed by the electron in state 〈2〉. This energy could also increase the energy of
a hole in the valence band, but this is less likely to occur in n-type semiconductors because of the
fewer number of holes.

making RG-centre recombinaton even more likely to occur. For weak and moderate
doping, it is the dominant recombination mechanism in Si, and the principal non-
radiative recombination mechanism in direct bandgap semiconductors such as GaAs.7

The rate of recombination depends on the presence of electrons, holes and traps, as
the sites of the favourable RG centres are often called. However, the rate-limiting step
will be the capture of the minority carrier by the trap: the capture of the majority carrier
is far more probable because of the greater number of carriers, e.g., holes in p-type
material. Thus, for p-type material, for example, the recombination rate is

RRG ≈ r NT n ≡ An p-type material , (3.12)

where r is a temperature-dependent rate constant, NT is the concentration of traps, and
A is a trap-dependent recombination coefficient, and has units of s−1.

The energy- and momentum-balance equations for this type of recombination are

Ee〈1〉 − Eh〈1′〉 =
∑

�ωβ

�ke〈1〉 − �kh〈1′〉 =
∑

�β . (3.13)

3.2.3 Auger recombination

Auger recombination is illustrated in Fig. 3.9, and is the inverse of impact-ionization
generation. The energy and momentum produced by the electron-hole recombination

7 Note also that these excited states will also facilitate the thermal generation of electron-hole pairs.
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Table 3.1 Recombination parameter values for Si and GaAs at 300 K. A, C and D as used in
ATLAS, the semiconductor device simulator from Silvaco [6, p. B-8]. B from Schubert [7].

Ae Ah B C D
Semiconductor (s−1) (s−1) (cm3s−1) (cm6s−1) (cm6s−1)

Si 1 × 107 1 × 107 3 × 10−14 8.3 × 10−32 1.8 × 10−31

GaAs 1 × 109 1 × 108 2 × 10−10 5 × 10−30 1 × 10−31

event are transferred to either a second electron or hole. These excited carriers then lose
their energy and momentum by emitting phonons. The emission process occurs readily
as there are many, many available states in the bands, to which the carriers can transfer
with changes in momentum and energy that are compatible with the phonon dispersion
relationship.

When the excited carrier is an electron, as shown in Fig. 3.9, the energy- and
momentum-balance equations are

Ee〈1〉 − Eh〈1′〉 = Ee〈2′〉 − Ee〈2〉 =
∑

�ωβ

�ke〈1〉 − �kh〈1′〉 = �ke〈2′〉 − �ke〈2〉 =
∑

�β . (3.14)

In the above equations, �ωβ and �β are the energy and momentum of each emitted
phonon, respectively.

This type of recombination needs to be considered when one of the carrier concentra-
tions is very high, yet both carriers are of importance, e.g., in the emitter of solar cells,
in the space-charge region of LEDs, and in the base of HBTs. In each recombination
event, two carriers of one type and one carrier of the other type are involved. Thus, the
recombination rate for the sum of the process shown in Fig. 3.9, and the corresponding
process involving the excitation of a hole, can be written as

RAug = Cn2 p + Dp2n , (3.15)

where C and D are Auger recombination coefficients with units of cm6s−1. Typical
values for these coefficients, and for the other recombination coefficients are given in
Table 3.1.

3.2.4 Recombination lifetime

Recombination is always occurring in a semiconductor, and, at equilibrium, its rate of
occurrence must exactly equal the rate of generation. The net rate of recombination out
of equilibrium is given, therefore, by the difference between the non-equilibrium- and
the equilibrium-recombination rates. This net rate is often denoted by U , and has units
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of m−3s−1. For radiative recombination, for example, we have

Urad = Bnp − Bn0 p0 , (3.16)

where the subscript ‘0’ denotes thermal equilibrium (see next chapter).
Consider now the situation when �n electron-hole pairs have been generated. The

net recombination rate is proportional to

np − n0 p0 = (n0 + �n)(p0 + �n) − n0 p0

= �n2 + �n(p0 + n0)

≈ �n2 + �np0 p-type material

= �np0 low-level injection

= �n(p0 + �n) high-level injection . (3.17)

In the above development, we have taken the case of p-type material (n0 � p0) and we
have defined two cases of recombination, depending on the magnitude of the generated
carrier concentration: when �n (=�p) is much less than the majority carrier concentra-
tion (p0 in this p-type example), the situation is one of low-level injection; when this
is not the case, we have high-level injection. Thus, the net rate of recombination for
minority carrier electrons can be written as

Ue,rad ≡ �n

τe,rad
, (3.18)

where τe,rad is the electron minority carrier radiative recombination lifetime, and is
given by

τe,rad = 1

Bp0
low-level injection

= 1

B(p0 + �n)
high-level injection . (3.19)

For recombination-generation-centre recombination the majority carrier concentra-
tion is of little consequence, so we have, for both levels of recombination,

τe,RG = 1

A
. (3.20)

However, note from (3.12) that A depends on the density of traps, which will depend, in
turn, on the dopant concentration because of the disruption to the lattice caused by the
incorporation of foreign atoms. Thus, A is likely to have some dependence on dopant
concentration. For Si, a simple, empirical relationship is often used for both electrons
and holes [6, p. 3–81]:

τe,RG = 5 × 10−7

(1 + 2N × 10−17)
, (3.21)
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where N is the doping density in cm−3. For GaAs, an empirical relationship for
recombination-generation-centre recombination is [8, p. 68]

τe,RG =
(

NA

1 × 1010
+ N 2

A

1.6 × 1029

)−1

τh,RG =
(

N 0.693
D

5.4 × 104
+ N 2.54

D

1 × 1040

)−1

, (3.22)

where the doping densities are to be expressed in cm−3.
For Auger recombination in p-type material under high-level injection conditions, the

minority carrier lifetime reduces to

τe,Aug = 1

C(�np0 + 2n0 p0 + �n2)
+ 1

D(2�np0 + p2
0 + �n2)

. (3.23)

The overall, electron minority carrier lifetime is given by

τe =
[

1

τe,rad
+ 1

τe,RG
+ 1

τe,Aug

]−1

. (3.24)

This lifetime is crucial to the operation of bipolar devices, such as solar cells, LEDS,
and HBTs, as discussed in later chapters.

3.3 Carrier concentrations

So far in this chapter we have talked about how electrons and holes are created and
destroyed, and we also know that these carriers reside in states within their respective
bands of allowed energies. We now derive expressions for the carrier concentrations, in
preparation for their use in the next chapter.

The fundamental expression for the electron concentration at some position �r at some
time t is

n(�r , t) = 1




∑
filled states

, (3.25)

where 
 is the volume over which the concentration is defined: it depends on the
dimensions of the system, e.g., it has units of m3 in 3-D. To turn this sum into an integral
over all momentum space �k, we first need to recall from Chapter 2 that the separation
between states in one dimension is 2π/L , where L is the length of the crystal in one
dimension. Also, we must recognize that each momentum state in �k space can contain
2 electrons, provided they are of different spin. Finally, if we are going to do an integral
over all �k states, some of which will be empty, we have to introduce a distribution
function to account for the probability of a particular state being occupied. Doing all
these things

n(�r , t) = 1




∑
filled states

⇒ 1




2
(2π )i




∫
�k

f (�r , �k, t) d�k , (3.26)



P1: Trim: 174mm × 247mm Top: 0.498in Gutter: 0.664in

pulfrey_cup cuuk824/Pulfrey 978 0 521 51460 6 December 25, 2009 21:51

44 3 Electron and hole concentrations

k

yk

xkk + dk 2p / L  

x

y

/ L2p

Figure 3.10 2-D representation of k-space spheres of radius k and k + dk. The circular shape
implies equal lengths Lx , L y and Lz (not shown) of the crystal in real space.

where i = 1, 2, or 3, is the dimensionality of the volume under consideration, and f is
the distribution function.

To turn this general equation into something specific, we consider the electron
concentration in the 3-D, time-independent case, and, to simplify the notation, we drop
the position identifier. Thus, (3.26) becomes

n = 1

4π3

∫
�k

f (�k) d�k . (3.27)

As we expect the electrons to fill-up states from the origin of �k out to higher values
of momentum, and, as the number of available states is huge, we can approximate the
surface of the actual volume of �k-space being filled as that of a sphere of radius k (see

Fig. 3.10), where k = |�k| =
√

k2
x + k2

y + k2
z .

More formally, the simplification we are making is that the distribution function f
depends only on the magnitude of k, i.e., in spherical coordinates

n = 1

4π3

∫ ∞

0

∫ π

0

∫ 2π

0
f (k)k2 sin θ dφ dθ dk . (3.28)

In either case the result is

n = 1

4π3

∫
k

f (k)4πk2 dk

n(k) = g(k) f (k)

g(k) = k2

π2
, (3.29)

where g(k) is the density of states in �k-space. In this particular case, g(k) is quoted for
3-dimensional real space, and has units of m−3[k]−1 ≡ m−2.
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Often it is convenient to express the density of states with respect to energy, rather
than with respect to wavenumber; in either case, the total number of states must be the
same, e.g., ∫ ∞

0
g(E − EC ) d(E − EC ) =

∫ ∞

0
g(k) dk , (3.30)

where g(E − EC ), in the 3-D case, has units of m−3J−1.
To proceed further, we need a tractable expression for the dispersion relationship; this

is where the parabolic-band approximation of Section 2.9.3 is helpful, namely

E − EC = �
2

2

[
k2

x

m∗
x

+ k2
y

m∗
y

+ k2
z

m∗
z

]

≡ �
2

2

k2

m∗
e,DOS

, (3.31)

where m∗
e,DOS is the density-of-states effective mass for electrons. For materials such

as GaAs, for which the constant-energy surfaces are spherical for electrons, m∗
e,DOS is

simply the parabolic-band effective mass. For Si the situation is a little more complicated,
as described in the next section.

Differentiating (3.31), d(E − EC ) in (3.30) can be written in terms of dk. The inte-
grands of each side of (3.30) can then be equated, which gives

gC (E − EC ) = 8π
√

2

h3
(m∗

e,DOS)3/2(E − EC )1/2 for E ≥ EC

gV (EV − E) = 8π
√

2

h3
(m∗

h,DOS)3/2(EV − E)1/2 for E ≤ EV , (3.32)

where we have added the analogous expression for the density of states in the valence
band gV (E) in terms of the density-of-states effective mass for holes m∗

h,DOS. More
details on m∗

h,DOS and m∗
e,DOS are given in the next section. Meanwhile, please note that

the densities of states in 3-D real-space increase parabolically with energy away from
the band edges.

Using (3.32) in (3.30) and (3.29), the electron and hole concentrations (per unit
volume) can be written as

n =
∫

gC (E) f (E) d E

p =
∫

gV (E)[1 − f (E)] d E , (3.33)

where the integrals are over the conduction and valence bands, respectively.
To complete the calculation of the carrier concentrations we need to know the distribu-

tion function f (E). Under the non-equilibrium operating conditions of a semiconductor
device this is not an easy task (see Section 5.2). However, the distribution function under
equilibrium conditions is well-known, and is presented in Section 4.2.
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Table 3.2 Density-of-states effective masses for Si and GaAs. The values at 4 K come from
using the parabolic-band effective masses from Table 2.1 in the equations given in this
chapter. The estimated values at 300 K are from Pierret [9].

m∗
e,DOS at 4 K m∗

h,DOS at 4 K m∗
e,DOS at 300 K m∗

h,DOS at 300 K
Semiconductor (m0) (m0) (m0) (m0)

Si 1.06 0.59 1.18 0.81
GaAs 0.067 0.53 0.066 0.52

3.4 Density-of-states effective masses in silicon

3.4.1 Electrons

In silicon, the constant energy surface for energies close to the bottom of the conduction
band is a prolate spheroid (see Fig. 2.12), as described by

E − EC0 = �
2

2

[
k2

x

m∗
l

+ k2
y + k2

z

m∗
t

]
, (3.34)

where m∗
l and m∗

t are the longitudinal and transverse parabolic-band effective masses,
respectively. The density-of-states effective mass in this case is found by specifying the
spherical volume, for which a single effective mass would apply, and that would contain
the same volume of states as the prolate spheroid. In fact, the equality must be with
6 prolate spheroids, as there are this number of equivalent volumes in Si, as Fig. 2.12
shows. The procedure is well known [9], and you can discover it for yourself by doing
Exercise 3.7. The result is

m∗
e,DOS = 62/3

(
m∗

l m∗2
t

)1/3
. (3.35)

The value for Si is given in Table 3.2.

3.4.2 Holes

In both Si and GaAs, there is a band of light holes and a band of heavy holes, and a
degeneracy at the extremum (see Fig. 2.9). The constant energy surfaces for each band
are warped spheres (see Fig. 2.13), but are often approximated as true spheres in order
to obtain values for the effective masses for light holes m∗

lh and heavy holes m∗
hh listed

in Table 2.1. The density of states for a single, spherical band involves an effective mass
raised to the power 3/2 (see (3.32)). Thus, the density-of-states effective mass for holes
in Si and GaAs is

m∗
h,DOS =

(
m∗ 3/2

hh + m∗ 3/2
lh

)2/3
. (3.36)

Values for Si and GaAs are listed in Table 3.2.
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Exercises

3.1 Suggest a combination of phonons, listing their number, type, energy and momen-
tum, that, when simultaneously absorbed in silicon, would enable the generation
of an electron-hole pair.

Does your answer make you appreciate why the intrinsic carrier concentration
in silicon is so low compared to the total number of electrons in the valence band?

3.2 Fig. 3.9 shows an Auger recombination event involving two electrons and one hole.
Re-draw Fig. 3.9a and Fig. 3.9b for the case of an Auger recombination event

involving one electron and two holes.
3.3 Obtain an appreciation of the rates of hole recombination in n-type silicon by

plotting the rates for radiative-, recombination-generation-centre- and Auger-
recombination against excess carrier concentration.

Determine the excess-carrier concentration at which Auger recombination
becomes dominant.

Compare this value with the optical generation rate in Fig. 7.5 to understand
why Auger recombination is important in the emitter of silicon solar cells.

3.4 Efficient LEDs and laser diodes are made from direct-bandgap semiconducting
materials. On the other hand, photodetectors that are sensitive to radiation at the
bandgap energy can be made from indirect-bandgap materials. Why is this so?

3.5 One exception to the general rule of LEDs requiring direct-bandgap materials is
the green GaP LED that used to be widely employed in backlighting (on telephone
keys, for example). GaP is an indirect-bandgap material with its conduction-band
minimum occuring at the X-point. The lattice constant for GaP is 0.545 nm. Light
emission comes from transitions involving optically active impurities, such as
oxygen or nitrogen. The electron wavefunctions associated with these impurities
are localized within a region �x of real space.

Make use of the Heisenberg Uncertainty Principle ((3.9)) to obtain an estimate
of �x .

3.6 The E-k relationships for the conduction bands of two semiconductor materials,
A and B, each with spherical constant-energy surfaces, can be expressed as

E A − 0.7 = αk2 and EB − 1.4 = 2α(k − k ′)2,

respectively, where α is a constant, k ′ > 0 and the energies are in units of eV.
Both materials have the same valence-band structure, with the top of the valence
band at E = 0 and k = 0.

Which material would have the higher intrinsic carrier concentration?
3.7 Derive (3.35) for the density-of-states effective mass for electrons in Si.
3.8 Plot the densities-of-states expressions in (3.32), with energy on the y-axis, for

silicon.
State the values for the densities of states in each band, in units of states

cm−3 eV−1, at an energy of 3
2 kB T away from each extremum. This energy is the

mean kinetic energy of carriers in an equilibrium distribution at low and moderate
doping densities.
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4 Thermal equilibrium

Thermal equilibrium in a semiconductor refers to the state when the temperature is uni-
form and has been steady for a long time, and when there are no sources of energy other
than heat, e.g., no applied electric field nor optical irradiation. Obviously, semiconductor
devices will not be in thermal equilibrium when they are in operation. However, it turns
out that parts of a device often remain in a state very close to thermal equilibrium and,
furthermore, knowledge of the carrier concentrations in thermal equilibrium is often a
good starting point for understanding how a device works.

In this chapter, we briefly discuss the collision processes that tend to randomize the
momenta of excited electrons and holes, then we introduce the thermal-equilibrium
distribution function, develop some useful expressions for the carrier concentrations
in equilibrium, and finish by considering the mean thermal velocity associated with
an equilibrium distribution of electrons. The last property is a further step towards
developing an understanding of current in diodes and transistors.

4.1 Collisions

In the previous chapter, we showed how the processes of recombination and generation
alter the carrier concentrations in the conduction and valence bands. Under thermal-
equilibrium conditions, the thermally activated band-to-band and chemical generation
processes are operative, along with one or all of the following recombination mecha-
nisms: radiative, RG centre, Auger. Obviously, for thermal equilibrium to be maintained,
the net sum of these various generation- and recombination-rates must be zero, i.e., as
heat is taken from the device to create an electron-hole pair, so it must be returned to the
lattice on recombination.1

The other dynamical aspect of thermal equilibrium is the maintenance of the carriers in
their lowest energy states within each band. As hinted at in Section 2.9, this is achieved by
the carriers continually making collisions with atoms, ions, defects and other carriers.
The situation is crudely illustrated in Fig. 4.1. The word ‘collision’ is familiar, and
conjures up visions of physical contact, as befitting particle-particle interactions. If we

1 You might like to ponder on how heat is eventually returned to the lattice after a radiative recombination
event.

49
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Si
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Figure 4.1 Very simple schematic representation of collisions: two electron-atom (Si) glancing
interactions; one electron-electron near-‘head-on’ collision, and two electron-ion (P+ and B−)
deflections.

were to take the wave viewpoint of an electron, a collision between an electron and a
lattice atom, for example, would refer to the interaction of the electron wave with a
phonon. Briefly, as the atoms vibrate about their mean positions, with an amplitude that
depends on the temperature, the periodicity of the lattice is disturbed. Thus the potential
in the system can no longer be considered as being exactly periodic. However, if the
perturbations are small, the electron wavefunctions can still be considered to be Bloch
wavefunctions, but with different values to those for a stationary, periodic lattice. Thus, if
the eigenfunctions change, the eigenvalues will also change, i.e., the state of the electron
will change on interacting with a vibrating atom. To get away from the particle-oriented
‘collision’, the word scattering is often used, i.e., the electron scatters to a new state on
interacting with an atom, an ion or another electron.

At low temperatures, when the thermal vibrations of the atoms are small, ionized-
impurity scattering tends to be the dominant scattering mechanism. If there are many
carriers present, they can screen other carriers from the attractive or repulsive effect of
the impurity ion’s charge, leading to screened ionized-impurity scattering. If the con-
centration of carriers is extremely large, carrier-carrier scattering becomes important.
In doped semiconductors at higher temperatures, phonon scattering dominates. Longi-
tudinal acoustic phonons, for example, alternately compress and dilate the lattice (see
Fig. 3.2b); the resulting strain deforms the band edges, leading to deformation poten-
tial scattering. In semiconductors for which there is no crystal inversion symmetry,
such as GaAs, the strain may generate a potential via the piezoelectric effect, leading to
piezoelectric scattering. Si and GaAs both have two atoms per unit cell. When these
atoms move in opposite directions, optic phonons are generated (see Fig. 3.2c). When
the two atoms become ions due to electron exchange, as is the case in the formation of
compound semiconductors such as GaAs, electric fields are created and we have polar
optic phonon scattering. This is the dominant scattering mechanism in GaAs at room
temperature. More details on scattering are given in Wolfe et al. [1, Section 6.6] and in
References [2, 3].
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In this book, we don’t treat scattering at the microscopic level. Instead, we allow all
such details to be absorbed into a macroscopic quantity called mobility, as described in
Chapter 5.

No matter how you view the interactions between the carriers and other entities in
the crystal, they serve to randomize the carrier velocities. So, in equilibrium, the bands
contain certain numbers of electrons and holes, and the velocities of these carriers are
randomized: there is a lot of motion but no net current.

4.2 The Fermi level

The problem of finding the most probable distribution of electrons among the available
states in the conduction and valence bands is a problem in statistical mechanics [1,
Sections 4.1, 4.2]. Here, we follow Talley and Daugherty [4] and arrive at the desired
distribution function in a relatively non-mathematical way by considering one of the types
of collisions (elastic, electron-electron) that are instrumental in maintaining thermal
equilibrium.

Let two electrons have energies E1 and E2 before a collision and energies E ′
1 and E ′

2

after the collision. No energy is lost to other processes in an elastic collision, so

[E ′
1 − E1] + [E ′

2 − E2] = 0 . (4.1)

For this collision to happen there must be filled states at energies E1 and E2, and empty
states at E ′

1 and E ′
2. The latter requirement is crucial to our argument, and is a recognition

of Pauli’s Exclusion Principle, i.e., no two electrons may exist in the same quantum state
at the same time. Calling the probability of occupancy f (E), we have for the rate of this
collision

r1,1′:2,2′ = C f (E1) f (E2)[1 − f (E ′
1)][1 − f (E ′

2)] , (4.2)

where C is the rate constant.
To maintain thermal equilibrium, elsewhere in the semiconductor a collision must be

occurring, at the same rate as the above collision, involving electrons with energies E ′
1

and E ′
2, with the result that the new energies of these electrons are E1 and E2. For this

collision to occur there must be filled electron states at energies E ′
1 and E ′

2, and empty
states at E1 and E2. This leads to

r1′,1:2′,2 = C f (E ′
1) f (E ′

2)[1 − f (E1)][1 − f (E2)] . (4.3)

Equating (4.2) and (4.3), dividing by f (E1) f (E2) f (E ′
1) f (E ′

2), we end up with[
1

f (E1)
− 1

] [
1

f (E2)
− 1

]
=
[

1

f (E ′
1)

− 1

] [
1

f (E ′
2)

− 1

]
. (4.4)

The solution to this equation, as can be verified by substitution, is[
1

f (E)
− 1

]
= AeβE , (4.5)
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where A and β are constants to be determined. Thus,

f (E) = [1 + AeβE ]−1 , (4.6)

where we realize that both constants must be positive for f (E) to be not greater than 1,
and for the states with the lowest energy to be the ones most likely to be occupied.

To identify β, consider some large energy E such that there is very little chance of
quantum states at this energy being filled by electrons, i.e.,

f (E) ≈ 1

A
exp(−βE) � 1 . (4.7)

In such a situation there’s very little chance of two electrons vying to occupy the same
state, i.e., the electrons are essentially non-interacting. A similar situation pertains to
gas molecules in an ideal gas, for which it is well-known from Thermal Physics that
the probability that a molecule has an energy E is ∝ exp(−E/kB T ), where T is the
absolute temperature and kB = R/N is Boltzmann’s constant; R is the gas constant
and N is Avogadro’s number. Thus β can be seen to be a universal constant, given by
1/kB T . It remains to label the constant A in (4.6); it is defined as exp(−EF/kB T ),
where EF is called, in the subject of semiconductor devices, the Fermi level.2 Thus,
from (4.7), the electron distribution function under conditions of thermal equilibrium
is

fF D(E) = 1

1 + exp[(E − EF )/kB T ]
. (4.8)

This is the Fermi-Dirac distribution function, the form of which is illustrated in
Fig. 4.2. We can also refer to fF D(E) as the probability of an electron occupying a state
of energy E at thermal equilibrium because it varies in value from 0 to 1, as we would
expect from having invoked the Pauli Exclusion Principle in its derivation.

Note that the probability of occupancy of states with energy E falls off rapidly
as E exceeds EF . In n-type semiconductor material there are many electrons that
must be accommodated in the conduction band by the filling-up of states. Clearly,
in such a material, states will be filled-up to higher energies than in the case of p-type
material, in which there are relatively few electrons. For higher energy states to have
a higher probability of being filled, it follows that the Fermi level must be raised, i.e.,
the Fermi level is higher in energy for n-type material than it is for p-type material.
Exactly how much higher depends on the relative doping levels, of course. This link
between EF and the equilibrium electron concentration n0 is established in the next
section.

2 In Physics, EF is called the Fermi level only at T = 0 K. At higher temperatures it is properly called the
chemical potential (see Section 6.1).
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Figure 4.2 The Fermi-Dirac distribution function for various temperatures. Reproduced from
Pulfrey and Tarr [5, Fig. 4.2].

4.3 Equilibrium carrier concentrations and the Fermi level

Adding bounds to the bands, (3.33) for the equilibrium concentrations of electrons and
holes becomes

n0 =
∫ top of band

EC

gC (E) fF D(E) d E

p0 =
∫ EV

bottom of band
gV (E)[1 − fF D(E)] d E , (4.9)

where the subscript ‘0’ indicates equilibrium, and fF D(E) is the Fermi-Dirac distribution
function.

To actually evaluate the carrier-concentration integrals it is convenient to assign the
limits of +∞ and −∞ to the top of the conduction band and to the bottom of the valence
band, respectively. This is not likely to cause significant error in the evaluation of the
integrals because it turns out that EF in semiconductors is usually either in the bandgap,
or close to one of the band edges, so fF D(E) rapidly goes to zero for energies high in
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Table 4.1 Effective densities-of-states and intrinsic carrier
concentrations for Si and GaAs. The values are for T = 300 K
and have been computed using the density-of-states effective
masses for this temperature from Table 3.2.

NC NV ni

Semiconductor (cm−3) (cm−3) (cm−3)

Si 3.2 × 1019 1.8 × 1019 9.5 × 109

GaAs 4.2 × 1017 9.4 × 1018 2.4 × 106

the conduction band, as does [1 − fF D(E)] for energies low in the valence band. The
result from (4.9) for electrons is

n0 = NCF1/2(aF ) , (4.10)

where all the material-constant terms have been collected together into NC , which has
the units of m−3 for a 3-D device and is termed the effective density of states in the
conduction band, given by

NC = 2

(
2πm∗

e,DOSkB T

h2

)3/2

, (4.11)

and F1/2(aF ) is called the Fermi-Dirac integral of order one-half, given by

F1/2(aF ) = 2√
π

∫ ∞

0

a1/2 da

1 + exp(a − aF )
, (4.12)

where a = (E − EC )/kB T and aF = (EF − EC )/kB T .
Fermi-Dirac integrals are listed as tabulated functions [1, Appendix B], and formulae

exist for their approximate evaluation [6]. A very convenient approximation to F1/2(aF )
arises if aF < −2:

F1/2(aF ) → exp(aF ) , (4.13)

which then enables (4.10) to be written concisely as

n0 = NC exp

(
EF − EC

kB T

)
. (4.14)

Values for NC and for NV , the corresponding effective density of states in the valence
band, are tabulated in Table 4.1.

Equation (4.14) is known as the Maxwell-Boltzmann expression for the equilibrium
electron concentration. It is compared with the full Fermi-Dirac expression of (4.10) in
Fig. 4.3. The limit of validity of (4.14) is seen to be (EC − EF > 2kB T ); this corresponds
to n0/NC < 0.4, i.e., to doping densities of about 1019 cm−3 and 1017 cm−3 in Si and
GaAs, respectively. The corresponding equation for holes, under conditions such that
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Figure 4.3 Comparison of the Fermi-Dirac ((4.10)) and Maxwell-Boltzmann ((4.14)) expressions
for n0. Reproduced from Pulfrey and Tarr [5, Fig. 4.3].

(EF − EV ) > 2kB T is

p0 = NV exp

(
EV − EF

kB T

)
. (4.15)

The Maxwell-Boltzmann expressions are instructive: if n0 is increased by adding more
donors, for example, (4.14) informs that EF will move closer to the conduction-band
edge; if p0 is increased by adding more acceptors, (4.15) informs that EF will move
closer to the valence-band edge. Thus, the inclusion of EF on an energy-band diagram
provides a convenient visual aid for ascertaining at a glance whether a region is doped
n-type or p-type, and it also gives some indication of the extent of the majority carrier
concentration.

The Maxwell-Boltzmann expressions (4.14) and (4.15) are so-named because their
exponential dependence on energy and on the reciprocal of kB T is characteristic of the
eponymous distribution function, namely

fM B(E) = e− (E−EF )
kB T . (4.16)

Physically, a Maxwell-Boltzmann distribution function represents, in the case of semi-
conductors, the situation where the quantum states in the band can be filled without
regard to Pauli’s Exclusion Principle. This can only be a reasonable approximation when
the number of electrons, for example, is far less than the number of available states in the
conduction band, i.e., when the likelihood of more than one electron occupying the same
state is very small. Evidently, as we have just seen, this is the case for n0/NC < 0.4.
When the doping density is such that this condition does not hold, the material is said to
be degenerate. In this circumstance, Fermi-Dirac statistics should be used; EF will pen-
etrate higher into the conduction band than predicted by Maxwell-Boltzmann statistics,
as Fig. 4.3 shows.
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4.4 Equations involving intrinsic properties

Often, it is useful to express the carrier concentrations in terms of their intrinsic, equi-
librium values. For intrinsic material, (4.14) and (4.15) apply, and they give

ni = NC exp

(
EFi − EC

kB T

)

pi = NV exp

(
EV − EFi

kB T

)
, (4.17)

where EFi is the Fermi energy for intrinsic material.
Equating these expressions, and substituting for the densities of states gives

EFi − EV = Eg

2
+ 3kB T

4
ln

[
m∗

h,DOS

m∗
e,DOS

]
, (4.18)

where Eg = (EC − EV ) is the bandgap of the semiconductor. For Si, where Eg � kB T
and the electron and hole density-of-states effective masses are not too dissimilar, it
follows that EFi lies almost at the middle of the bandgap.

Multiplying ni by pi , and noting that ni = pi , gives

ni =
√

(NC NV ) exp

( −Eg

2kB T

)
. (4.19)

This equation shows that ni is a temperature-dependent material constant, and that the
intrinsic carrier concentration drops drastically as the bandgap increases, as hinted at
in Section 2.7 when discussing the difference between semiconductors and insulators.
Note that the product of (4.14) and (4.15) is independent of the Fermi energy. It follows
that

n0 p0 = ni pi = n2
i . (4.20)

However, remember that (4.14) and (4.15) are not correct when the doping is very high,
i.e., they only apply to non-degenerate conditions. Check the text following (4.16) to
appreciate the doping-density limitation to (4.20). The extent of the departure of the
product n0 p0 from the value of n2

i at high doping levels can be appreciated by doing
Exercise 4.2.

One example of the use of (4.20) is in the computation of the equilibrium carrier
concentration in a uniform, field-free region of a semiconductor, e.g., in the bulk of the
emitter of a diode or an HBT, or in the body of a MOSFET (see Exercise 4.3). In these
circumstances it follows that local charge neutrality exists,3 namely

q(p0 − n0 + ND − NA) = 0 . (4.21)

3 More generally, out-of-equilibrium, but in steady-state operation, the semiconductor device will be overall
neutral:

∫
volume

q [p(x, y, z) − n(x, y, z) + ND(x, y, z) − NA(x, y, z)] dx dy dz = 0. This can be appre-
ciated from the facts that: the semiconductor starts out neutral; electrons and holes, or charge carriers and
oppositely ionized dopants, are generated together; electrons and holes recombine in pairs; if there is a
steady-state current, as one charge enters the device, another must leave it.
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In conjunction with (4.20), (4.21) yields

n0 =
X +

√
X2 + 4n2

i

2
, (4.22)

where X = ND − NA.
The carrier concentrations can be expressed in terms of the intrinsic carrier concentra-

tion by combining each of (4.14) and (4.15) with (4.17) to give alternative expressions
for n0 and p0:

n0 = ni exp

(
EF − EFi

kB T

)

p0 = ni exp

(
EFi − EF

kB T

)
. (4.23)

Again, please note that these expressions only hold for non-degenerate conditions.

4.5 Mean unidirectional velocity of an equilibrium distribution

The equilibrium spectral carrier concentration for electrons from (3.33) is

n0(E) = gC (E) f0(E) . (4.24)

This expression can be evaluated easily when f0 is expressed as a Maxwell-Boltzmann
distribution:

fM B(E) = e− E−EF
kB T

≡ e− E−EC +EC −EF
kB T

= n0

NC
e− E−EC

kB T . (4.25)

The result for the case of n0 = 1019 cm−3 is shown in Fig. 4.4, where the distribution
has been split-up into two parts. The distribution on the right is that for the electrons
with positive crystal momentum +�ke, or, equivalently, for example, with a velocity
component in the positive x-direction, while the one on the left is its oppositely directed
counterpart. Each half of the distribution contains exactly n0/2 electrons, and is called
a hemi-Maxwellian in this case.4 At any plane in the material, the flow of electrons
in the positive-going distribution will be opposed by the flow of negative-going elec-
trons from a neighbouring distribution, so, as must be the case at equilibrium, there is
no net current. However, if the conditions in a device were near-equilibrium, but the
distributions were slightly different in neighbouring locations, due to a non-uniform

4 If Fermi-Dirac statistics had been used, each half of the distribution would be a hemi-Fermi-Diracian.
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Figure 4.4 The full Maxwellian distribution, comprising two, counter-propagating
hemi-Maxwellian distributions, for the equilibrium case of n0 = 1019 cm−3.

doping density, for example, then the opposing charge flows at an intermediate plane
would not cancel, and there would be a current. This is an example of diffusion. Other
examples where the current due to a near-equilibrium hemi-Maxwellian or hemi-Fermi-
Diracian might arise are in the injection of carriers into the base of an HBT or into the
channel of a FET. Thus, it is useful to compute the current due to each of these hemi-
distributions. To do so, we must first determine the mean speed of the electrons in the total
distribution.

The mean speed of electrons in a distribution at thermal equilibrium is defined as

vth =
∫∞

0 vn0(v) dv∫∞
0 n0(v) dv

, (4.26)

where n0(v) is the velocity-spectral concentration of electrons at equilibrium, i.e., the
number of electrons per m3 per unit velocity. The denominator is just the total electron
concentration, as given by (4.10). To deal with the numerator we need an expression for
n0(v). To obtain this, take n(E) = gC (E) f0(E), substitute for the density of states from
(3.32) and for the Fermi-Dirac function from (4.8), and then make the transformation
from an energy distribution to a velocity distribution via the kinetic-energy expression
(2.41):

(E − EC ) = 1

2
m∗

thv
2 , (4.27)

where m∗
th is an appropriate effective mass, which will be identified in the following

subsection. The result is

n0(v) = 8π

h3

(m∗
e,DOSm∗

th)3/2v2

1 + exp[m∗
thv

2/2kB T ] exp[(EC − EF )/kB T ]
. (4.28)
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X
vth

dq

q

Figure 4.5 A ‘velocity-sphere’ approach to computing the average x-directed velocity. The radius
vth is the mean thermal speed. As the electron velocities are randomly distributed in direction,
the number of electrons with velocities in the range θ to θ + dθ is related to the area of a strip of
length 2πvth sin θ and of width vthdθ . To express this as a fraction of the total number of
electrons, we divide by 4πv2

th , to get sin θdθ

2 . Each stream of electrons has a velocity component
vth cos θ in the x-direction. Integrating from 0 to π/2 completes the calculation of the mean,
unidirectional velocity. Reproduced from Pulfrey and Tarr [5, Fig. 8.5].

Substituting this into the numerator of (4.26), integrating, and dividing by n0, the result
for the mean thermal speed from (4.26) is

vth =
∫∞

0 v3
[
1 + exp(m∗

thv
2/2kB T + (EC − EF )/kB T )

]−1
dv∫∞

0 v2
[
1 + exp(m∗

thv
2/2kB T + (EC − EF )/kB T )

]−1
dv

≡
∫∞

0 a [1 + exp(a − aF )]−1 da∫∞
0 a1/2 [1 + exp(a − aF )]−1 √m∗

th/2kB T da

=
√

8kB T

πm∗
th

F1

F1/2
, (4.29)

where, following the notation of (4.12), the substitutions a = (E − EC )/kB T =
m∗

thv
2/2kB T and aF = (EF − EC )/kB T have been made, and the final result has been

cast in the form of a material-dependent constant and a ratio of Fermi-Dirac inte-
grals. Note that for non-degenerate cases, the ratio of the two integrals is essentially
unity.

The resulting vth is to be understood as the speed (magnitude of the velocity) of an
electron stream in any particular direction. As no one-particular direction is favoured in
thermal equilibrium, the electron motion is random. However, if all the random velocities
are resolved along a particular direction, as shown in Fig. 4.5, then the average velocity
component, 〈vx 〉 for example, is found to be vth/4, as explained in the figure caption.
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Table 4.2 Mean, unidirectional thermal velocities for electrons at 300 K in Si
and GaAs, for various doping densities. The conductivity effective-masses
for electrons and holes are from the expressions given in Section 5.4.

m∗
h,CON m∗

e,CON n0, F1/F1/2 vR,e

Semiconductor (m0) (m0) (cm−3) (nm/ps)

1 × 1018 1.0 53
Si 0.40 0.26 1 × 1019 1.0 53

1 × 1020 1.3 69

1 × 1018 1.2 125
GaAs 0.39 0.066 1 × 1019 2.1 218

1 × 1020 4.5 468

This mean, unidirectional velocity is written as vR .5 Thus,

vR =
√

kB T

2πm∗
th

F1

F1/2
. (4.30)

4.5.1 Effective mass and vR

The effective mass in (4.30) must be related in some way to the unidirectional motion
of electrons. For spherical constant-energy surfaces and a single band, mth is simply the
band effective mass. This is the case for electrons near the conduction-band minimum
in GaAs. For the ellipsoidal constant-energy surfaces applicable to Si, the 6 equivalent
conduction-band minima lie along the 〈100〉 directions (see Fig. 2.12). Thus, for a specific
uni-direction within this set, m∗

l applies to two of the ellipsoids, and m∗
t applies to the

other four. An effective mass that takes this anisotropy into account is the conductivity
effective mass, m∗

CON. In Section 5.4 we derive this parameter, both for electrons and
ellipsoidal constant-energy surfaces, and for holes and two, non-interacting spherical
constant-energy surfaces. Suffice to say here, we take

m∗
th ≡ m∗

CON . (4.31)

With this interpretation of m∗
th , some values of vR for electrons in Si and GaAs are

as given in Table 4.2. The Fermi-Dirac integrals were evaluated using the short-series
approximations given in Ref. [6].

4.5.2 Current and vR

Now that we know the concentration of carriers and their mean, unidirectional velocity,
we can appreciate that the average flux of electrons in the x-direction, for example, is
n0vR . A more instructive way of writing this is n0

2 2vR , as this makes it explicit that only

5 The subscript R comes from Sir Owen W. Richardson, Nobel laureate for physics in 1928 for ‘his work on
the thermionic phenomenon and especially for the discovery of the law named after him’.
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one-half of the electrons in the distribution actually have a component of velocity in
the positive x-direction. Evidently, for each of the counter-directed hemi-distributions,
comprising n0/2 electrons and illustrated in Fig. 4.4, the mean unidirectional velocity is
2vR . Formally, this fact follows from the construction in Fig. 4.5 by simply dividing by
the area of a hemisphere, rather than by that of a sphere. Thus, the current densities due
to the right- and left-going hemi-distributions are

�Je,→ = −q
n0

2
2vR x̂

�Je,← = −q
n0

2
(2vR)(−x̂) . (4.32)

Each component can be of enormous magnitude (≈ 8 × 106 A/cm2 for n0 = 1019 cm−3

in Si, for example), but they cancel each other exactly, as required of an equilibrium
distribution.

Exercises

4.1 Confirm the symmetry of the Fermi-Dirac distribution function about EF by show-
ing that the probability of a state of energy �E above EF being occupied is the
same as the probability of a state of energy �E below EF being empty.

4.2 Consider p-type Si for 3 different cases of boron doping, i.e., 1016 cm−3, 1018 cm−3,
and 1020 cm−3.
(a) Calculate the equilibrium carrier concentrations, p0, n0, and the Fermi-level

position, (EF − EV ), for each case at 300K. For the majority carrier concen-
tration use Fermi-Dirac statistics.

(b) Determine the validity of p0n0 = n2
i , where the intrinsic carrier concentration

is given by (4.19).
(c) The reason why this equation is not satisfied at high doping densities is some-

times referred to as ‘Pauli blocking’. Suggest what this term may mean.
4.3 A diffused-junction n-p diode is made by diffusing phosphorus into boron-doped

silicon. The concentrations of both dopants can be taken to be uniform, and to have
values of NA = 1016 cm−3 and ND = 1017 cm−3.

Evaluate the equilibrium carrier concentrations in the diffused region at 300 K.
4.4 Some semiconductor devices are rated to operate at temperatures of about 200◦C.

In GaAs at this temperature, is it reasonable to assume that EFi − EV ≈ Eg/2?
4.5 Taking into account the temperature dependence of the effective density of states

NC and NV , but ignoring the slight reduction in bandgap with temperature, at
what temperature does ni in Si reach the value of a typical doping density, say
1017 cm−3 ?

4.6 The E-k relationships for the conduction bands of two semiconductor materials,
A and B, can be expressed as
E A − EC = αk2 and EB − EC = 2αk2,
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respectively, where α is a constant, and EC is the energy of the bottom of the
conduction band.

Consider each material to be moderately doped n-type, with the same concen-
tration of donors, all of which can be taken to be ionized.

Which material would have its Fermi energy closer to EC ?
4.7 Given that m∗

th = 0.40m0 for holes in silicon, compute the mean, unidirectional
velocity for holes at 300 K when the p-type doping density is: (a) 1018 cm−3, and
(b) 1020 cm−3.

4.8 Use the value of vR,h calculated in the previous question for the case of p0 =
1018 cm−3 to evaluate the current density due to a hemi-Maxwellian distribution
of these holes.
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5 Charge transport

The picture of charge carriers that should have emerged so far is one of electrons
and holes moving through the semiconductor in momentum states. The carriers are
continually being generated and annihilated, and they are also frequently scattered to
new momentum states via collisions with vibrating atoms, ionized impurities and other
carriers. In thermal equilibrium large fluxes are present, but there is no net current. To
disturb this equilibrium, and obtain a non-zero net flow of charge, we need to establish
some driving force within the semiconductor. Fundamentally, this driving force is a
gradient in energy. It can be manifest as a gradient in the potential energy, which is
related to the electrostatic potential ψ , and as a gradient in kinetic energy. If each of
the n electrons per m3 has a kinetic energy u, the total kinetic energy density W is nu.
Gradients in both n and u can produce a current. The main objective of this chapter is
to describe and characterize the currents due to each of these three gradients.

The above picture is one of dissipative transport, i.e., one in which the directed
momentum of electrons injected into a region from a hemi-Maxwellian distribution, for
example, is dissipated by scattering events. If the region is so short that the injected
electrons can traverse it without being scattered, then we have ballistic transport. In
most of the devices considered in this book, dissipative transport is more prominent, but
ballistic transport does occur in tunnelling, for example, and is likely to occur in future
nanoscale devices, as briefly discussed in Chapter 18.

5.1 Charge, current and energy

Charge, current and energy figure prominently in this chapter. Here, we give the fun-
damental definitions of the densities of these properties. To keep things simple, we
assume parabolic bands with an isotropic effective mass, and write the expressions for
the densities of current and kinetic energy in terms of only the x-directed component.
The starting point in all three cases is the expression for carrier density n, as given for
the 3-D case by (3.27). Multiplying this equation by −q gives an expression for the
electron charge density:

−qn = −q
1

4π3

∫
�k

f (�k) d�k . (5.1)

Multiplying (3.27) by −qvx , where vx = (1/�)d E/dkx is the x-directed velocity,
attributes a velocity to each occupied state, the sum of which leads to the x-directed
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current density:

Je,x = −q
1

4π3

∫
�k
vx f (�k) d�k . (5.2)

Multiplying (3.27) by m∗v2
x/2 gives the x-directed kinetic energy density:

We,x = 1

4π3

∫
�k

1

2
m∗v2

x f (�k) d�k . (5.3)

The distribution function, f (�k), or to give it its full set of dependencies, f (�r , �k, t), must
be found for the non-equilibrium conditions necessary for a net current to exist. This is
a difficult task. To begin to solve the problem, we must first formulate an equation that
describes how f might change in both real space and in k-space in response to relevant
forces.

5.2 The Boltzmann Transport Equation

The full, 6-D (�r , �k)-environment is called phase space. Here, for simplicity, we’ll restrict
our discussion to just two dimensions of this space, x and kx . Recall from Section 2.9 that
the crystal momentum �k is the momentum due to forces other than the periodic crystal
forces. It is these other forces that we are interested in, so we can view f (x, kx , t) as the
probability of an electron at position x having a momentum �kx at time t . The fact that
we are simultaneously specifying a position and a momentum means that we are treating
the electron classically. This is consistent with the effective-mass formalism in which
the group velocity of a wavepacket is involved. In fact, the treatment is semi-classical,
because there is some quantum mechanics involved in getting the group velocity and in
describing scattering processes microscopically.

With this understanding of the situation, under the action of some force Fx , an electron
will move a distance vx�t in time �t , where vx = (1/�)d E/dkx is the x-directed
velocity. The electron will also change its momentum according to ��kx/�t = Fx . As
we are saying that the electron has moved from one state in phase space to another state,
the probability of occupancy of these two states must be the same, thus

f (x, kx , t) = f

(
x + vx�t, kx + Fx

�
�t, t + �t

)
. (5.4)

Taking �t as being very small permits a Taylor series expansion of the right-hand side
to first order. Equation (5.4) then becomes

∂ f

∂t
= −vx

∂ f

∂x
− Fx

�

∂ f

∂kx
. (5.5)

Now, let us specify the force as being due to an applied electric field Ex and due to a
scattering force Fx, coll. The former force is given by −qEx , and the latter is defined from

∂ f

∂t

∣∣∣∣
coll

≡ −1

�

∂ f

∂kx
Fx, coll , (5.6)
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where we have reverted to the label ‘coll’ for scattering events, in keeping with the more
classical picture of collisions involving interactions of particles with atoms, ions and
other charge carriers. Adding in the forces, we obtain the 1-D version of the Boltzmann
Transport Equation

∂ f

∂t
= −vx

∂ f

∂x
+ qEx

�

∂ f

∂kx
+ ∂ f

∂t

∣∣∣∣
coll

. (5.7)

This is a ‘balance equation’ for the distribution function: driving forces due to kinetic
energy (related to velocity) and potential energy (related to field) are moderated by the
restoring force of collisions. Much of the difficulty involved in solving this equation
comes from having to specify in a tractable way the complicated, microscopic nature of
scattering.

5.2.1 The Method of Moments

Rather than describe how to solve the Boltzmann Transport Equation (BTE) directly for
f , we appeal to the Method of Moments to arrive at useful expressions for the properties
of more interest to us: charge density, current density and kinetic-energy density. The
method involves multiplying each term of the BTE by some factor ϒ and integrating
over d�k/4π3. We include vx in ϒ , and label the moments according to the power to
which vx is raised. Thus, we seek to solve for: −qn in (5.1) using the zeroth-order
moment, Je in (5.2) using the first-order moment and We in (5.3) using the second-order
moment.

We follow the approach of Datta [1], and we make use of the general result of applying
the Method of Moments to the BTE:

∂

∂t
� + ∇ · J� = G� − R� , (5.8)

where � is −qn, Je, or We, according to the order of the moment being considered. In
(5.8), J� = �v� is the flux of �, G� is the rate at which � is generated by the electric
field, and R� is the rate at which � is lost due to scattering. It is permissible to write
∇ · J� in this manner, instead of as �v · ∇�, because �v, the group velocity, is a function
of k only. The order of the terms in (5.8) is different from that in the BTE, and the
equation has been written in 3-D form to distinguish between divergence and gradient.
With these changes, (5.8) has a very clear physical interpretation: the difference between
the generation and loss of � in a volume serves to either increase � with time in the
volume, or to result in a net flow of � out of the volume. The situation for steady-state
conditions is illustrated in Fig. 5.1.

5.2.2 The continuity equations

The results for each term in (5.8) for the first three moments are tabulated in Table 5.1.
For the charge density, there is no generation term because the electric field does not

generate any charge. Also, there is no loss due to scattering because charge is not lost in
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Table 5.1 Terms in (5.8) for the first three moment-solutions to the BTE.

ϒ � J� G� R� Continuity of:

−qv0
x −qn Je,x 0 0 charge density

−qvx Je,x −2qWe,x /m∗ q2nEx /m∗ Je,x /〈〈τM 〉〉 current density
m∗v2

x /2 We,x Se,x Je,xEx (We,x − W0) /〈〈τE 〉〉 kinetic energy density

G
R

(v    )outΦ(v    inΦ)

Figure 5.1 Schematic representation of the continuity equation (5.8), for the case of a 1-D flow of
some property �. A flux of v� carries 3 units of � at a velocity v into the volume from the left.
Two units are lost by scattering, and one unit is generated by the internal field. The situation
shown here is for steady-state conditions, so 2 units of � exit to the right at velocity v.

the scattering process, it is merely redistributed among the allowed momentum states.1

Thus, the charge continuity equation for electrons is

∂n

∂t
= 1

q

∂ Je

∂x
. (5.9)

The current-density continuity equation describes the fact that current is generated
by the field, and lost due to scattering. This loss is actually a loss in momentum,
which is described by the momentum relaxation time τM . In general, one would expect
the time dependence of the current, after the removal of the field, to be of the form
J (t) = J (0)e−t/τ , which gives

d J

dt
= − J (t)

τ
≡ −R� . (5.10)

Substituting for R� for the first-order moment term involving ∂ f/∂t for collisions,
reveals the precise form that τ must have:

〈〈τM 〉〉 = − ∫
kx f d�k∫

kx
∂ f
∂t

∣∣∣
coll

d�k
, (5.11)

1 Note that we are only considering conditions within one band, the conduction band in this case. If we were
also to consider the valence band, then G� would not be zero if impact ionization were occurring, and R�

would not be zero if recombination were happening.
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where the double brackets signify the special averaging explicit in (5.11). The J� term
in the first-order-moment equation involves v2

x , which is clearly related to the x-directed
kinetic-energy density. Therefore, ∇ · J� is a flux of kinetic-energy density. Thus, the
meaning of the first-order-moment equation is: if the loss of x-directed momentum due
to scattering is greater than the gain of x-directed momentum due to the field, then, to
maintain the steady state, there must be a net inflow of kinetic energy density.

In the kinetic-energy-density continuity equation the generation term is the product
of the current density and the field, i.e., the electrons constituting Je,x are accelerated
by Ex , thereby gaining kinetic energy. This gain is countered by scattering events that
randomize the kinetic energy. The latter are described by a properly averaged energy
relaxation time 〈〈τE 〉〉. The principal parameters in the flux term J� are vx mv2

x n. Check
out the units of this and you’ll find they are, as expected, J/m2s. Equivalently, the units
are W/m2, which are more comprehensible because they inform that the flux of kinetic-
energy density is just a power density. A practical example of this is the irradiance of
the sun, which we’ll encounter in Chapter 7. The symbol used here for the flux is Se,x .

It is an elusive task to evaluate n, Je,x or We,x from the moment equations that can be
assembled by substituting the terms from Table 5.1 into (5.8). If we want to evaluate n,
we need Je,x . The next moment equation gives us Je,x , providing we know We,x . The next
moment equation would allow evaluation of We,x if the flux of kinetic energy density
Se,x were known. And so it goes on. To get closed-form solutions for the properties
of interest, we must make some approximations. Two approximations that are widely
used for the design and analysis of semiconductor devices are described in the next two
subsections.

The Drift-Diffusion Equation
The electron kinetic-energy density arises from a concentration of n electrons, in which
each electron possesses some kinetic energy. In 1-D

We,x = n〈ux 〉 , (5.12)

where 〈ux 〉 is the mean, x-directed kinetic energy of an electron. The single brackets
indicate that the average is performed over the distribution function, i.e., for the parabolic
band case,

〈ux 〉 = 1

n

1

4π3

∫ (
1

2
m∗v2

x

)
f d�k . (5.13)

Thus, the divergence term in (5.8) can be written as

− 2
q

m∗
d

dx
We,x = −2

q

m∗

[
〈ux 〉 dn

dx
+ n

d〈ux 〉
dx

]
. (5.14)

To obtain the Drift-Diffusion Equation, we make the assumption that the contri-
bution to the kinetic-energy density gradient from the spatial change in the electron
concentration is much greater than the contribution from any spatial change in the aver-
age kinetic energy of each electron. Thus, in steady-state, the current-density continuity
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equation yields

Je,x = qnµeE + q De
dn

dx
, (5.15)

where the electron mobility and diffusivity are defined from:

µe ≡ q

m∗ 〈〈τM 〉〉 , (5.16)

and

De ≡ 2µe

q
〈ux 〉 , (5.17)

respectively. The latter equation is often called the Einstein Relation, and reduces to
the familiar De/µe = kB T/q when the mean, x-directed kinetic energy is given by
〈ux 〉 = kB T/2. This occurs for low doping densities under near-equilibrium conditions,
as can be verified by doing Exercise 5.3. Understand that the mobility is a macroscopic
representation of the microscopic scattering processes that are specified by the average
momentum relaxation time.

The Drift-Diffusion Equation (DDE) has been the ‘workhorse’ for device engineers
for decades, and it continues to be useful for modern devices in many situations, as we
show in later chapters of this book. Physically, the approximation that we made in order
to get the DDE is justifiable in situations where the regions of a device are long enough
for any gradients in 〈ux 〉, due to injection of energetic carriers from a neighbouring
region, for example, to be essentially eliminated by randomizing scattering events. This
situation may not apply to some modern transistors, for which the trend is towards
smaller and smaller devices.

The Hydrodynamic Equations
When neither component of the gradient in kinetic-energy density can be ignored, we
need to proceed to the next order of continuity equation before making any approxima-
tions. Looking at the continuity equation for W , we see that we need to know something
about the flux of kinetic-energy density S, which, basically, is the product of We and
some velocity that describes the electron ensemble. This velocity comprises a compo-
nent due to the applied field, and a component due to the scattering processes [6]. Here,
we simplify the situation by ignoring any component due to the field. Thus, we regard
the electrons as a sort of ideal gas, with their kinetic energy being related solely to their
random motion. From the Kinetic Theory of Gases, this kinetic energy can be described
by a temperature. Here, we label the electron temperature as Te, and note that it may
differ from the lattice temperature TL . At equilibrium, Te = TL , of course. However,
if the electron gas is ‘heated’, by being accelerated in an electric field, for example, then
it may gain energy faster than it can lose it to the lattice, so Te will exceed TL . It is in
this context that one speaks of ‘hot’ electrons. Having approximated the kinetic energy
as that of an ideal gas, we can write

We,x = n〈ux 〉 ≈ n
1

2
kB Te . (5.18)
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Because we’ve neglected the drift component of W , the kinetic-energy-density flux (the
power density) S is a diffusive flow, which depends on the gradient of Te. Thus, we can
write

Se,x ≈ −κe(Te)
∂Te

∂x
, (5.19)

where κe represents the thermal conductivity of the electron gas: it is a function of
the electron temperature, and also of the electron mobility and concentration (see
Exercise 5.4).

Applying (5.18) to (5.14), and then using the resulting expression for ∂We,x/∂x in
the current continuity equation, leads to a revised expression for the steady-state current
density:

Je,x = qnµeEx + µekB Te
dn

dx
+ µekBn

dTe

dx
. (5.20)

The new term makes it explicit that a diffusive current can arise from a temperature
gradient.

Applying (5.18) and (5.19) to the kinetic-energy-density continuity equation:

∂We,x

∂t
− κe

∂2Te

∂x2
= Je,xEx − kB

2

(Te − TL )

〈〈τE 〉〉 . (5.21)

When this energy-density continuity equation is added to the continuity equations for
charge density and for current density, the resulting set is a simplified form of the 1-D
Hydrodynamic Equations:2

∂n

∂t
= 1

q

∂ Je

∂x

∂ Je,x

∂t
= 2q

m∗
∂We,x

∂x
+ q2n

m∗ Ex − Je,x

〈〈τM 〉〉
∂We,x

∂t
= κe

∂2Te

∂x2
+ Je,xEx − kB

2

(Te − TL )

〈〈τE 〉〉 . (5.22)

5.3 The device equation set

To assemble a master set of equations that is useful for the design and analysis of ‘semi-
classical’ devices, we start with the Hydrodynamic Equations (5.22). The first and third
equations in this set describe the conservation of charge density and of kinetic-energy
density, respectively. In their present form they apply to conservation of charge and
kinetic energy of electrons only within the conduction band. To make these equations
useful for actual devices, we need to add terms that allow for interband transfer of
electrons. Specifically, we must include recombination and generation events.

The charge continuity equation is amended to account for the explicit generation of
charge carriers due to the optical and impact-ionization processes discussed in Chapter 3.

2 Equations of this form were used in Fluid Dynamics before their application to electron transport.
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We label the sum of these as Gop,ii. Thermal generation and all the recombination
mechanisms discussed in Chapter 3 are lumped together in a net recombination rate U .
Thus, the right-hand side of the first equation in (5.22) is augmented by (Gop,ii − U ).

The continuity equation for kinetic-energy density must also take recombination
and generation into account because these processes change the number of carriers in
a band and, consequently, the kinetic-energy density. Recombination of one electron,
for example, removes 3kB T e/2 of kinetic energy from the electron ensemble in the
conduction band. Impact-ionization generation involves a loss of kinetic energy by one
electron, but the promotion of another electron to the conduction band, so now two
electrons can gain energy from the field. It’s not so obvious how to quantify this process,
but it is not unreasonable to attribute to each generation event a kinetic energy gain
equal to the bandgap energy [2]. Thus the change in kinetic-energy density due to
recombination and generation could be expressed as

H = −3kB Tc

2
U + EgGii , (5.23)

where Tc is the carrier temperature.
Recombination/generation processes involve electrons and holes, so our master set

of equations must also contain expressions for the conservation of hole charge, and of
hole kinetic-energy density. The second equation in the hydrodynamic set describes the
continuity of electron flow (current density). We need to add the corresponding equation
for holes. Finally, we must allow for the fact that the concentrations of electron and
hole charge densities, −qn and qp, respectively, could lead to local space charge, which
would then influence the electrostatic potential ψ . Thus, Poisson’s Equation must be
added to our set.

Expressing W and S in their approximate forms (see (5.18) and (5.19)), the master
set of equations for steady-state and 3-D is:

− 1

q
∇ · Je = Gop,ii − Ue

1

q
∇ · Jh = Gop,ii − Uh

Je = −qnµe∇ψ + kB Teµe∇n + kBnµe∇Te

Jh = −qpµh∇ψ − kB Thµh∇ p − kB pµh∇Th

−∇ · (κe∇Te) = −Je · ∇ψ − 3nkB

2

(Te − TL )

〈〈τE 〉〉 − 3kB Te

2
U + EgGii,e

−∇ · (κh∇Th) = −Jh · ∇ψ − 3pkB

2

(Th − TL )

〈〈τE 〉〉 − 3kB Th

2
U + EgGii,h

−∇2ψ = q

ε
(p − n + ND − NA) . (5.24)
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The generation and recombination terms G and U in the charge continuity equations
depend on the carrier concentrations n and p, (see Section 3.2). The parameters µ and
〈〈τE 〉〉 are material properties, so they can, in principle, be determined from experi-
mental measurements. In practice, the energy relaxation time and the carrier thermal
conductivities are unlikely to be independent of carrier temperature, and the mobility
may be field-dependent because the momentum relaxation time is likely to depend on
the applied force. These dependencies can be expressed empirically, or derived from
more detailed theoretical treatments. Given this, it is emphasized that there are only
two assumptions embedded in the set (5.24). The first is that carrier transport is semi-
classical, as we implied when using Newton’s Laws to formulate the BTE. The second
is that, for the purpose of describing the kinetic-energy density, the contribution to W
of the average velocity that the carriers might have due to the applied field is negli-
gible. The latter assumption was made to allow us to simplify the expression for the
flux of kinetic-energy density S, and, thereby, to truncate the moment equations into a
closed-form set.

The set of equations (5.24) comprises 5 independent equations in 5 unknowns, n, p,
Te, Th , and ψ . Generally, the set has to be solved numerically, and there are commercial
solvers available to do this.3

Finally, it is noted that, even though the carrier temperatures Te and Th are functions
of position, it is implicit in our master set of equations that the lattice temperature TL

is constant. Thus, our equations are an isothermal set. To allow for spatial variation in
TL , a lattice energy balance equation must be added to the set, and provision must be
made for heat to leave the device, through a contact, for example. A simple expression
for heat balance in the steady state is

∇ · (κL∇TL ) = −( �Je + �Jh) · E , (5.25)

where κL is the material thermal conductivity, and the right-hand side of the equation
describes Joule heating. Addition of this equation to (5.24) provides a set of equations
for non-isothermal conditions. In Section 16.3.1 we briefly examine the effect of such
a non-isothermal condition on the DC and high-frequency characteristics of an HBT.

5.4 Mobility

Mobility is defined in (5.13) in terms of the average momentum relaxation time 〈〈τM 〉〉,
which is given by (5.11). Because an applied force changes momentum, and some scat-
tering mechanisms are momentum dependent, we can expect the mobility to be field
dependent. Another way of looking at this is to recognize that electrons are accelerated
by an electric field, and move to new momentum states. In the parabolic-band approxi-
mation, this is the same as saying the field moves electrons to new velocities. The average
of these field-related velocity changes is called the drift velocity, �vd .

3 For example, ATLAS from Silvaco Data Systems, and MEDICI and Sentaurus from Synopsys, Inc.
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Figure 5.2 Drift velocity vs. field for low-doped Si and GaAs. Reproduced with permission from
Sze [3, Fig. 2.23], C© John Wiley & Sons, Inc. 1985.

From the current-density expressions in our master set of equations (5.24), it can be
seen that the component of current that is directly related to the electric field is, using
the electron current as an example, qnµeE . The electron drift velocity can be defined
from this equation:

−qn�vde ≡ −qnµe∇ψ = qnµe �E , (5.26)

from which it should be noted that the drift velocity for electrons is in the opposite
direction to the field, as dictated by the negative charge on the electron. This fact is
hidden when magnitudes are used in the definition of drift velocity, as is often the
case:

vde(E) = | �vde(E)| ≡ µe(E)E . (5.27)

Note that the field-dependence of the mobility is included in this definition, so it is not
restricted to low-field conditions, under which 〈〈τM 〉〉 could be independent of field, and
the relationship between vd and E would be linear.

Experimentally, it is possible to measure vd , and some results for Si and GaAs are
shown in Fig. 5.2. This is a ‘log-log’ plot, but it can be inferred that the relationship is
approximately linear at low fields, after which vd tends to saturate, and even decrease
for the case of electrons in GaAs.

In Si, an important scattering mechanism for electrons at room temperature is inter-
valley scattering, in which the electrons scatter between the six equivalent conduction-
band ‘valleys’, which result from taking a cross-section through the six equivalent
prolate spheroids shown in Fig. 2.12. As E increases, the scattering rate for this process
increases, i.e., 〈〈τM 〉〉 decreases, causing a reduction in µ. Eventually, the scattering rate
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becomes so high that any further increase in field leads only to transfer of energy to the
lattice; nothing is left to accelerate the electrons preferentially in the direction of the
field, so vde saturates at what is called the saturation velocity, vsat.

In GaAs, when intervalley scattering occurs, it is not between equivalent valleys, as
these don’t exist in this material. Instead it is to a valley at slightly higher energy (see
Fig. 2.9). This valley is less steep-sided than the lower valley, so when electrons are
transferred to it their effective mass is increased (see (2.28)). Thus, at high fields in
GaAs, µe decreases due to both increased scattering and increased effective mass: this
leads to the decrease in vde shown in Fig. 5.2.

The figure is compiled from steady-state measurements, and the transport under such
conditions is sometimes called stationary. If measurements were made on a time-scale
of the order of the momentum relaxation time, then, at high fields, we may anticipate
higher drift velocities being recorded, due to there being insufficient time for collisions
to establish a steady state. This phenomenon is called velocity overshoot, and can result
in peak velocities that are several times higher than those shown in Fig. 5.2.

5.4.1 Empirical expressions for mobility

The mobility appears in each of the 3 terms for current in (5.24), so it is important to be
able to characterize it in an easily usable form. For Si, this is not difficult because the
saturating characteristic of Fig. 5.2 can be approximated simply by

1

vd (E)
= 1

µ0E + 1

vsat
, (5.28)

where µ0 is a field-independent mobility, which is taken to apply at low fields. Using
(5.27) in this equation gives

µ(E) = µ0

1 + µ0

vsat
E . (5.29)

The measured low-field mobility µ0 is shown for Si and GaAs in Fig. 5.3. The decrease
at high doping density is due to increased ionized-impurity scattering. Useful empirical
relationships for µ0 exist, from which the mobility at 300 K can be readily computed.
For Si [4],

µe0 = 88 + 1252

1 + 6.984 × 10−18 N

µh0 = 54.3 + 407

1 + 3.745 × 10−18 N
, (5.30)

and for GaAs [5],

µe0 = 8300

[
1 + N

3.98 × 1015 + N/641

]−1/3

µh0 = 380[
1 + 3.17 × 10−17 N

]0.266 , (5.31)
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Figure 5.3 Dependence of low-field mobility µ0 and diffusivity on total impurity concentration.
Reproduced with permission from Sze [3, Fig. 2.3], C© John Wiley & Sons, Inc. 1985.

where µ is in cm2 V−1 s−1, and the total impurity concentration N = NA + ND is in
cm−3.

5.4.2 Conductivity effective mass

The definition of mobility in (5.16) involves the effective mass. For a single, spherical
constant energy surface, as employed in the development of the drift-diffusion and
hydrodynamic equations, the relevant effective mass is just the band effective mass m∗.
For other situations, such as the multiple spherical surfaces in the valence band, and the
multiple prolate spheroids in the conduction band of Si, some way of accounting for
the multiple contributions to the mobility must be found. This is achieved by writing the
expression for the conductivity, σ , in a suitable form. The units of σ are Sm−1, where
S is Siemens, and its value is given by the ratio of the drift current density to the electric
field:

σ ≡ 1/ρ = q(nµe + pµh) , (5.32)

where ρ is the resistivity.

Conductivity effective mass for holes
In Si and GaAs, there are two hole bands, the heavy- and light-hole bands, that are
degenerate at the tops of the bands (see Fig. 2.9). If the average momentum relax-
ation times are the same for holes in each of these bands, we can write the hole
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conductivity as

σh ≡ Jh,drift

E = q2〈〈τM 〉〉
[

phh

m∗
hh

+ plh

m∗
lh

]
≡ q2〈〈τM 〉〉

[
phh + plh

m∗
h,CON

]
, (5.33)

where the band effective masses for the heavy holes and the light holes are identified, and
a conductivity effective mass, m∗

h,CON is defined. We know from the densities-of-states
expressions (3.32) that the carrier concentrations are proportional to m∗

DOS
3/2, and that,

in the spherical case, m∗
DOS is simply the band effective mass. We can use these facts in

the above equation to develop an expression for the hole conductivity effective mass:

1

m∗
h,CON

=
[

phh

m∗
hh

+ plh

m∗
lh

] [
1

phh + plh

]

= m∗
hh

1/2 + m∗
lh

1/2

m∗
hh

3/2 + m∗
lh

3/2 . (5.34)

Values for m∗
h,CON for Si and GaAs are listed in Table 4.2.

Conductivity effective mass for electrons in Si
Look at Fig. 2.12 for Si, and consider any direction from the set 〈100〉. In four of
the six equivalent conduction bands the electrons would respond to an electric field in
the chosen direction with the transverse effective mass m∗

t . In the other two bands the
relevant effective mass would be the longitudinal effective mass m∗

l . If the n electrons
in the material are distributed equally among the six bands, then we can write

σe ≡ Jde

E = q2〈〈τM 〉〉n

6

[
2

m∗
l

+ 4

m∗
t

]
≡ q2〈〈τM 〉〉n

[
1

m∗
e,CON

]
, (5.35)

from which it follows that

1

m∗
e,CON

= 1

3

[
1

m∗
l

+ 2

m∗
t

]
. (5.36)

The value for m∗
e,CON for Si is listed in Table 4.2.

5.5 Current

Current density J is defined by (5.2). Physically, it is the net flow of charge through a
surface whose normal is parallel to the flow. Fundamentally, the flow is caused by some
gradient in energy. One of the components of current in our master set of equations
(5.24) arises from a difference in potential energy; this is the drift current. The other
two are due to gradients in either of the two contributors to the kinetic energy: the carrier
concentration and the carrier temperature. These components are the diffusion current
and the thermal current, respectively. Some aspects of these currents are discussed in
this section.
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5.5.1 Drift current

From (5.24) and the discussion in the previous section on mobility, the drift-current
densities for electrons and holes are

�Je,drift = −qnµe(E)∇ψ = qnµe(E) �E = −qn�vde(E)

�Jh,drift = −qpµh(E)∇ψ = qpµh(E) �E = qp�vdh(E) . (5.37)

Note: for a given field, the electrons and holes drift in opposite directions, but the current
densities have the same sign.

The actual distribution of the carriers in k-space is not explicit in these equations:
it is implicitly taken into account in either µ(E) or vd (E). This is, perhaps, a reminder
that we know nothing about the actual non-equilibrium distribution function for the
electrons and holes. We do know, however, because we have expressed µ as a function
of E , and because we have allowed vd to reach its saturation value (see Fig. 5.2), that
the drift-current expressions can be used up to high values of field, i.e., in situations
where we would expect the distribution function to be far from its equilibrium form.
To appreciate this, note from Fig. 5.2 that vsat for electrons in Si, and the peak vd for
electrons in GaAs, are around 107 cm s−1, which is a very similar value to that of the
mean, unidirectional thermal velocity for an equilibrium hemi-Maxwellian distribution
(see Section 4.5). Thus, at such fields, vd cannot be viewed as a minor perturbation
to 2vR .

At low fields, perhaps around 102 V cm−1, then it might be reasonable to view the
distribution of carriers as being only slightly perturbed from its equilibrium value. Each
electron in a velocity state (parabolic bands) of �k/m∗ could be imagined to be shifted
to a state (�k/m∗ + vd ) due to acceleration by the field between collisions. Denoting
the forward- and backward-going parts of the distribution by subscript arrows, we would
have

�Je,drift = �Je,drift→ + �Je,drift←

= −q
n

2
(2�vR + �vde) +

(
−q

n

2
(−2�vR + �vde)

)
= −qn�vde , (5.38)

where n, rather than n0, is used to emphasize the non-equilibrium situation. However,
bear in mind that near-equilibrium is implied by the employment of vR in (5.38). This
inconsistency is dealt with by characterizing the electron distribution via a quasi-Fermi
energy, rather than by the Fermi energy EF (see Chapter 6). The distribution in this
low-field case is called a displaced Maxwellian, and is illustrated in Fig. 5.4. The veloc-
ity distribution function follows from (4.25) for fM B(E) and from the transformation
of energy above EC to velocity given by (4.27). Including the drift velocity vde, the
function is

f (v) = n0

NC
exp[−m∗

CON(v − vde)2/2kB T ] . (5.39)
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Figure 5.4 Velocity distribution functions for n = 6.25 × 1016 cm−3 in the equilibrium case (solid
line) and for a current density of magnitude 104 A cm−2 (dashed line).

In the example shown, the displacement in velocity is vde = 104 m s−1 ≈ 2vR/10, and
this is sufficient to give a drift current density of 104 A cm−2.

To emphasize that such a large current density can be borne by a near-equilibrium
distribution, we consider the two hemi-Maxwellian velocity-spectral carrier concentra-
tions for the conditions listed in Fig. 5.4. The concentrations in the Maxwell-Boltzmann
case considered here follow from (4.28):

n0(v) = 8π

h3

(m∗
e,DOSm∗

CON)3/2v2

exp[m∗
thv

2/2kB T ] exp[(EC − EF )/kB T ]
. (5.40)

The results are plotted as a function of velocity in Fig. 5.5. Note how the symmetrical
distribution in equilibrium is distorted by the transfer of carriers to the right-going
distribution in the presence of a drift field.

5.5.2 Diffusion current

From (5.24), the equations for the diffusion currents are

�Je,diff = kB Teµe∇n

�Jh,diff = −kB Thµh∇ p . (5.41)

kB Tc is a measure of the mean kinetic energy of each carrier. Thus, even if the carrier
temperature Tc is constant, a gradient in carrier concentration causes a flow of kinetic
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Figure 5.5 The hemi-Maxwellian portions of the carrier distribution in velocity for the two cases
presented in Fig. 5.4: equilibrium case (solid line), non-equilibrium case (dashed line).

energy, and, consequently, a flow of charge. For a given concentration gradient, electrons
and holes diffuse in the same direction, but the current densities have opposite signs.

As in the case of the expressions for drift current, the distribution function is not
explicit, and nor are the diffusion currents limited to near-equilibrium conditions. How-
ever, it is instructive to appreciate that diffusion currents can issue from equilibrium
distributions. To see this, consider Fig. 5.6, in which two Maxwellian distributions with
different concentrations of electrons are separated by a distance 2l̄. The current density
at some intermediate plane, e.g., at x = 0, is

�Je = −q
n1

2
2�vR + (−q)

n2

2
(−2�vR) = −q

(n1

2
− n2

2

)
2�vR . (5.42)

The two distributions have to be close enough together so that the electrons from each
distribution can cross the plane at x = 0 without suffering collisions, as such events
might change the distributions. The mean distance between collisions is called the mean
free path, and it is denoted by l̄ on Fig. 5.6. The concentration difference 1

2 (n1 − n2)
should be evaluated over a distance of this order. This can be done via a Taylor series
expansion of each distribution about x = 0, and by keeping terms to first order. For
example,

n2

2
= n(0 + l̄)

2
≈ n(0)

2
+ 1

2

dn

dx
l̄.
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Figure 5.6 Schematic of diffusion due to the close juxtaposition of two hemi-Maxwellian
distributions of different electron concentration.

Taking the corresponding expression for n1/2, and substituting into (5.42) gives

�Je,diff = ql̄2vR

�dn

dx
≡ q De

�dn

dx
. (5.43)

Expressing the diffusion current in terms of the diffusivity D is more usual than writing
it in terms of either l̄ or kB T µ.

You may be curious, or even be alarmed, that we’ve taken two Maxwellian distributions
and produced a net current: this may appear to be inconsistent because Maxwellians are
equilibrium distributions, and a net current is not allowed at equilibrium! What this
actually means is that, if there were a diffusion current at equilibrium, then it would
be exactly negated by a current due to some other mechanism, such as drift. This is
precisely what happens in a np-junction at equilibrium (see Section 6.1).

5.5.3 Thermal current

From (5.24), the equations for the thermal currents are

�Je,therm = kBnµe∇Te

�Jh,therm = −kB pµh∇Th . (5.44)

These currents exist when neighbouring carrier ensembles have different average kinetic
energies. One example where this might occur is the injection of high-energy electrons
into a p-type region in which the existing carriers are at near equilibrium. As the hot
electrons cool towards the near-equilibrium distribution by scattering and recombination,
there is a gradient in Te that drives the injected carriers forwards. This thermal current
is, in this particular example, in the same direction as the diffusion current, and is often
masked by it. One instance where the thermal current is evident is in HBTs operating at
high currents (see Section 16.3.1).
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electron states

ballistic path

dissipative path

EC

n+ n+p

Figure 5.7 Illustration of electron transport through a region of electric field in a transistor.
Bottom path: dissipative transport, creating near-equilibrium conditions. Top path: ballistic
transport, creating non-equilibrium conditions in the uniform-field region. The energy of the
ballistic electrons is eventually given to the lattice in the highly doped n-region, where
ionized-impurity scattering and electron-electron scattering are large.

5.6 Ballistic transport

Drift, diffusion, and thermal currents all result from transport processes in which scatter-
ing tends to dissipate any momentum that is imparted by an applied force. Collisionless,
or ballistic, transport is possible in regions of a device that are shorter than the mean free
path l̄. The difference between dissipative and ballistic transport is illustrated in Fig. 5.7.

We can estimate l̄ in the near-equilibrium case from (5.43) and (5.17):

De = l̄2vR = kB Te

q
µ

l̄0 = kB TL

q

µ0

2vR
, (5.45)

where the subscript ‘0’ indicates equilibrium or, in this case, near-equilibrium with a
low applied field. Similarly, the electron gas is taken to be in equilibrium with the lattice.
We’ll now use this equation to estimate l̄0.

For very low doping densities, Fig. 5.3 informs that µ0 is about 1300 cm2 V−1 s−1 for
Si, and about six times higher for GaAs. From Table 4.2, values of 2vR at low doping
and TL = 300 K can be inferred to be about 107 cm s−1 for Si, and about twice this
value for GaAs. Thus, under these conditions, l̄0 is about 30 nm for Si and about 100 nm
for GaAs. These values will decrease as the doping density is raised, because of the
associated decrease in µ0 and increase in 2vR . Nevertheless, the estimated values of l̄0
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Figure 5.8 Bottom part: Potential energy profile to illustrate the concept of tunnelling from
Region 1 to Region 3 of an electron with energy less than the potential energy U2 of the barrier
separating the two regions. The top part of the figure indicates the probability density for an
electron entering the system from the right with an energy E such that U1 < E < U2.
Specifically: U2 − U1 = 2.7 eV, E − U1 = 0.45 eV, U3 − U1 = −1 eV, the barrier has thickness
d = 2.3 nm, and is of a material with a relative permittivity of 3.9, and an effective mass for
electrons of 0.3m0. The electron effective mass in Regions 1 and 3 is 0.9m0. All these parameter
values are intended to represent tunnelling in a CMOS90 N-FET with ψox = 1 V.

do give an indication of the device feature sizes at which we might need to consider
the possibility of ballistic transport occurring. We do this specifically in Chapter 18. A
special case of ballistic transport is tunnelling, which we now describe.

5.7 Tunnelling

5.7.1 Probability density current

Consider the potential profile shown in Fig. 5.8: two regions of constant potential energy,
U1 and U3, are separated by a thin barrier. The top of this barrier is triangular, and could
represent the potential profile in the oxide of a MOSFET, as illustrated in many of the
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Figure 5.9 Redrawing of the probability density from Fig. 5.8. The logarithimic scale emphasizes
the small (≈10−8 m−1) probability density of electrons tunnelling from Region 1.

band diagrams in Chapter 10. Here we simplify the barrier to that of a rectangular barrier
with peak height U2. Classically, an electron in Region 1 with energy E1 < U2 would be
reflected from the interface with Region 2. Quantum mechanically, provided the barrier
is not infinitely high, the electron has a finite probability of penetrating the barrier and
appearing in Region 3. This phenomenon of penetrating an insurmountable barrier is
known as tunnelling.

Recall from Chapter 2 that �(y, t)�∗(y, t) is a probability density, where � is the
time-dependent electron wavefunction. We are interested in the flow of the probability
density from one region to another

d P

dt
= �∗ ∂�

∂t
+ �

∂�∗

∂t

= 1

i�

[
�∗

(
i�

∂�

∂t

)
+ �

(
i�

∂�∗

∂t

)]
. (5.46)

The time-dependent Schrödinger Wave Equation is

i�
∂�

∂t
= − �

2

2m∗ ∇2� + U� , (5.47)

where U is potential energy, and the appearance of m∗ means that we are using the
effective-mass form of the Schrödinger equation, as discussed in Section 2.11.
Furthermore, we have chosen to ignore the difference between wavefunctions and enve-
lope functions (see (2.37)). Taking complex conjugates where necessary, and substituting
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into (5.46), some manipulation yields

d P

dt
= − i�

2m∗ ∇ · [�∇�∗ − �∗∇�
]

≡ −∇ · �JP , (5.48)

where �JP is defined as the probability density current. The defining line of (5.48) follows
from the basic idea of continuity, as discussed in Section 5.2.2: any spatial change in the
flow of some property must result in a temporal change of that property.

5.7.2 Transmission probability

To begin to estimate �JP we need to evaluate �. We’ll assume a one-dimensional system
and we’ll limit U to having only a spatial dependence, so that we need only solve for
ψ(y), the spatial part of �(y, t).4 For each of the three regions in Fig. 5.8 the Schrödinger
Wave Equation can be written as

− �
2

2

d

dy

(
1

m∗
dψ

dy

)
+ (U − E)ψ = 0 . (5.49)

The boundary conditions for solving this equation follow from the discussion in Sec-
tion 2.11.1, which can be summarized as:

� ψ is continuous across a boundary, and
� 1

m∗
dψ

dy is continuous across a boundary.

Within the three regions of Fig. 5.8, and for an electron entering from the right with
an energy E such that U1 < E < U2, the solutions to (5.49) are

ψ1 = Aeik1 y + Be−ik1 y

ψ2 = Cek ′
2 y + De−k ′

2 y

ψ3 = Feik3 y , (5.50)

where A − F are coefficients to be determined, and the wavenumbers are

k1 = 1

�

√
2m∗

1(E − U1)

k2 = 1

�

√
2m∗

2(E − U2) ≡ ik ′
2

k ′
2 = 1

�

√
2m∗

2(U2 − E)

k3 = 1

�

√
2m∗

3(E − U3) . (5.51)

Note that k1, k ′
2 and k3 are all real. Therefore, ψ1ψ

∗
1 is oscillatory, ψ2ψ

∗
2 is exponentially

damped if C � D, and ψ3ψ
∗
3 is a constant. These forms are illustrated in the top part of

4 See Section 2.3 for how to separate �(y, t) into spatial and temporal components.
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Fig. 5.8. Physically, a wave enters from the right, its magnitude is reduced exponentially
as it traverses the insulator as an evanescent wave and, if the insulator is not too thick,
some small fraction of the probability density wave exits on the left.5 Applying the two
boundary conditions to the two interfaces gives us four equations in the five unknowns
A − F , so we can only evaluate relative amplitudes, such as F F∗/AA∗.

What we really want is the ratio of the output probability density current JP,F to the
incident probability density current JP,A. Using the definition of JP from (5.48), we find
that

JP,A = �k1

m∗
1

|A|2

JP,F = �k3

m∗
3

|F |2 . (5.52)

So, the desired ratio, which is called the transmission probability, is

T = k3

k1

m∗
1

m∗
3

|F |2
|A|2

≡ vk,3

vk,1

|F |2
|A|2 , (5.53)

where the second equation, written in terms of the state velocities, follows from our use
of the parabolic-band approximation. It also follows from (5.52) that |A|2 and |F |2 must
be charge densities. Note that T is a function of E .

The so-called asymmetric rectangular potential barrier of Fig. 5.8 allows an analytical
solution for T . After considerable algebra, the solution is

T = 4m1k3/m3k1

(1 + k3m1/k1m3)2 cosh2(k ′
2d) + (k ′

2m1/k1m2 − k3m2/k ′
2m3)2 sinh2(k ′

2d)
.

(5.54)

The essence of this equation can be appreciated by making the assumption that k ′
2d � 1.

This assumption is satisfied when the wavelength of the electron in Region 2
(λ2 = 2π/k ′

2) is much less than the barrier thickness, and implies that the tunnelling
probability is low. Under this approximation, both the hyperbolic functions in (5.54)
reduce to e2k ′

2d/4, and T becomes

T = 16

4 +
(

k ′
2m1

k1m2
− k3m2

k ′
2m3

)2 exp

[
−2d

�

√
2m∗

2(U2 − E)

]
. (5.55)

This equation brings out the importance in tunnelling of both the barrier thickness d and
the barrier height U2. The pre-exponential factor is often of order 1, in which case an

5 The component Ceik′
2

y is that part of ψ2 due to reflection of the evanescent wave at the boundary between
materials #2 and #3.
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Figure 5.10 The top part illustrates tunnelling of electrons through an insulator from either
the conduction band (top electron,) or from quasi-bound states (bottom electron), in a
semiconductor. The bottom part of the figure shows the k-space axes for computation of the
current due to tunnelling from Region 1 to Region 3. For application of this to tunnelling in a
MOSFET, Region 1 would be the channel and Region 3 would be the gate.

even simpler expression results:

T ≈ exp

[
−2d

�

√
2m∗

2(U2 − E)

]
. (5.56)

Non-rectangular barrier
When the barrier is not rectangular, it can be divided up into a number of thin rectangular
slices, each of width dy, and the approximate expression for the transmission probability
(5.56) can be expressed in integral form

T ≈ exp

[
−2

�

∫ y2

y1

√
2m∗

2(U (y) − E) dy

]
. (5.57)

The same result can be obtained from the so-called JWKB Approximation, in which
Schrödinger’s equation is solved under the assumption that U (y) varies slowly in com-
parison to the electron wavelength λ = 2π/k [7].

5.7.3 Tunnel current

In this book the prime example of tunnelling is the so-called ‘leakage current’ through
the insulator in a MOSFET. We derive an expression for this current in this subsection,
but you may want to read about MOSFETs in Chapter 10 and Chapter 13 before trying
to follow the details. Consider Fig. 5.10, which sets up the k-space axes in order to
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compute the current due to electrons tunnelling from Region 1 to Region 3. Here, we
associate Region 1 with the channel of an N-MOSFET, Region 2 with the gate oxide,
and Region 3 with the gate metal. We consider two cases: one where the electrons in
Region 1 are not confined; and, secondly, where the electrons are confined in a potential
well.

Tunnelling from a continuum of states
Here, we assume that electrons in Region 1 are not confined, and we treat EC as being
flat, as we did for U1 in Fig. 5.8. The fundamental expression for the y-directed current
density in Region 1 comes from (5.2). Multiplying this by the transmission probability
gives the expression for the y-directed electron current density in Region 3:

Je,y = −q
1

4π3

∫
�k

T (ky)vy f (�k) d�k . (5.58)

Let us take m∗
1,x = m∗

1,z ≡ m∗
⊥: this enables the energy to be written as

E = U1 + �
2k2

y

2m∗
1,y

+ �
2k2

⊥
2m∗

⊥

≡ Ey + �
2k2

⊥
2m∗

⊥
, (5.59)

where k2
⊥ = k2

x + k2
z .

Going to polar coordinates, we can write∫ ∞

−∞
dkx

∫ ∞

−∞
dkz ≡

∫ 2π

0
dθ

∫ ∞

0
k⊥dk⊥ . (5.60)

Changing variables from k⊥ to E using (5.59), substituting (5.60) in (5.58), and rear-
ranging, we get

Je,y = −q
1

2π

∫ ∞

0
T (ky)vy dky

∫ ∞

Ey

2

(2π )2
2π

m∗
⊥

�2
f (E) d E . (5.61)

The reason for the rearrangement is to highlight the second integral. By examining its
dimensions it can be appreciated that the integral represents an areal density. It is, in fact,
the density of electrons n2D in the 2-D sheet of electrons at the oxide/semiconductor
interface having an energy E = Ey , i.e., each of the electrons spread across the surface
that has energy Ey has a probability of tunnelling T (ky) with a velocity vy . The integral
is easily solved by variable substitution.6 The result is

n2D(EF − Ey) = m∗
⊥kB T

π�2
ln
[
1 + e(EF −Ey )/kB T

]
. (5.62)

Finally, making the variable change from ky to Ey in (5.61) using (5.59), the electron
tunnel current is

J = −q

h

∫ ∞

U1

T (Ey)n2D(EF − Ey) d Ey . (5.63)

6 b = (EF − E)/kB T is an appropriate substitution to make.
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We will use this expression in Section 13.1.6 for estimating the gate leakage current in
modern MOSFETs.

Tunnelling from quasi-bound states
In this case, which is also illustrated in Fig. 5.10, the volume in Region 1 is now Lx Lza,
where a is the width of the quantum well from which the electrons are tunnelling. Here
we assume a rectangular well. The system can no longer be considered to be periodic in
the y-direction, so we employ our usual conversion from a sum-of-states to an integral
over all states only for the x- and z-directions. Thus, the equivalent to (5.61) is

Je,y = −q
1

a

∑
ky>0

T (ky)vy(ky)
∫ ∞

Ey

2

(2π )2
2π

m∗
⊥

�2
f (E) d E , (5.64)

where Ey in this case is given by

Ey = U1 + Up , (5.65)

where Up is the energy level of each of the p bound states. For an infinite well, for
example, Up = p(�2π/2m∗

ya). Thus the expression for the current density corresponding
to (5.63) is

Je,y = −q
2m∗

⊥
ah�

∞∑
p=1

T (ky,p)vy(ky,p)
∫ ∞

U1+Up

f (E) d E . (5.66)

This expression, but perhaps without the simplifying assumption of an infinite well,
could be used for the gate leakage current in a heterojunction FET (Section 11.3), or for
an improvement upon (5.63) in the case of MOSFETs.

Exercises

5.1 Consider a 1-D crystal of length 1 cm. The effective mass for holes in this material
is 0.5m0. What is the current density due to carriers in the valence band at the
instant when the only unoccupied state has a wavenumber of 4.32 × 108 m−1?

5.2 In our derivation of the Boltzmann Transport Equation, electrons were assumed
to move ‘classically’ between scattering events. There is a limit to how small a
device can be before this implicit assumption of precise knowledge of the position
and momentum of an electron is rendered invalid by its violation of Heisenberg’s
Uncertainty Principle.
(a) Consider that kB T/5 is a reasonable value for the uncertainty in energy of an

electron of energy kB T , and derive an expression for the minimum allowable
uncertainty in position.

(b) Show that the transport of electrons in GaAs can be considered to be classical
if the sample has dimensions that are greater than ≈25 nm.

5.3 In the balance equations deriving from the Boltzmann Transport Equation the
mean x-directed kinetic energy of an electron 〈ux 〉 occurs frequently.
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(a) Derive an expression for 〈ux 〉 in terms of kB T and Fermi-Dirac integrals.
(b) Evaluate 〈ux 〉 for carrier concentrations of 1 × 1016 and 1 × 1020 cm−3 in

gallium arsenide.
5.4 Equation (5.19) is an expression for the x-directed flux of kinetic energy Se,x in

terms of the electron-temperature gradient and an electron thermal conductivity
κe.

Write Se,x as a product of kinetic energy density and electron velocity, and
then perform a Taylor series expansion to get Se,x in terms of the mean-free-path
length l̄ and dTe/dx . The procedure is the same as used for the diffusion current
in Section 5.5.2. Use the relation between l̄ and diffusivity to show that

κe = qnµe

(
kB

q

)2

Te . (5.67)

5.5 Write down the equilibrium version of the 1-D BTE. This equation must be
satisfied when f is the Fermi-Dirac distribution function.

Determine the implications of this as regards the spatial dependencies of EF

and lattice temperature TL in the case of a semiconductor device in which there
is a built-in electric field.

Recall that the BTE is an equation in phase space, so when dealing with just real
space, k-dependent properties, such as kinetic energy, can be treated as constant.

5.6 Consider the electron current-density equation in (5.24), and take it to apply to
the n-type region of a device in which there is negligible electric field. Electrons
are injected into one end (x = 0) of the device and are extracted at the other
end (x = L). The extraction process accelerates the electrons near x = L . The
electron current density Je,x is constant throughout the device, and, for most of
the length of the device, it is due entirely to the concentration-gradient term in
(5.24).

Explain how the ‘thermal-gradient’ current alters the diffusion contribution to
Je,x as the end of the device at x = L is approached.

5.7 The E-k relationships for the conduction bands of two semiconductor materials,
A and B, each with spherical constant-energy surfaces, can be expressed as

E A − 0.7 = αk2 and EB − 1.4 = 2α(k − k ′)2,

respectively, where α is a constant, k ′ > 0, and the energies are in units of eV.
Both materials have the same valence-band structure, with the top of the valence
band at E = 0 and k = 0.

Which material would have the higher intrinsic conductivity?
5.8 Look at the band structure of GaAs in Fig. 2.9 and consider n-type material. The

electrons are occupying states in the conduction-band ‘valley’ centred at the 	

point.
An electric field E is now applied and steadily increased. Eventually, the elec-

trons gain enough energy from the field to transfer into the conduction-band valley
that is closer to the X point.
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Sketch the J − E characteristic of the material, and give your reasons for its
shape.

5.9 Consider Fig. 4.4 for the full Maxwellian distribution of 1019 cm−3 electrons in
silicon. Now, let the equilibrium be very slightly disturbed so that the concentration
of electrons in the left-going hemi-Maxwellian is reduced by a small amount.
The concentration of electrons in the right-going hemi-Maxwellian distribution
remains unchanged.

Calculate the change in concentration of electrons in the left-going distribution
if a current density of magnitude 104 A cm−2 is to be supported.

Is this change small enough for our near-equilibrium assumption of hemi-
Maxwellian distributions to be reasonable?

In support of your answer, it would be instructive to construct Fig. 4.4, and then
to add to it the new left-going distribution. If there’s no visible difference, then
‘near-equilibrium’ would be a reasonable description.

5.10 Consider a silicon sample doped with 1017 donors per cm3. For a given electric
field, what is the ratio of the drift-current densities of electrons and holes?

5.11 The donor doping density in a piece of silicon varies as ND(x) = N0 exp(−ax).
(a) Find an expression for the electric field at equilibrium over the range for

which ND � ni .
(b) Sketch the energy-band diagram for this case, and indicate the direction of

the electric field. Explain qualitatively why the electric field is in the direction
you have shown.

5.12 Consider a sample of uniformly doped (1017 cm−3), n-type Si to which an electric
field of 1000 V cm−1 is applied.
(a) Use the BTE to show that the distribution function for this case can be

represented by a ‘displaced Maxwellian’. Assume that the collision term can
be written as ( f0 − f )/τm , where τm is a constant. This is known as the
Relaxation Time Approximation.

(b) Estimate the extent of the displacement.
5.13 The transmission probability for an asymmetrical rectangular barrier is given by

(5.54).
(a) Simplify this expression by: taking the barrier to be symmetrical and of height

U2; assuming the effective masses are the same in all three regions (= m∗);
assuming that k ′

2d � 1. Show that the resulting expression is

T = 16

4 +
(

k ′
2

k1
− k1

k ′
2

)2 exp

[
−2d

�

√
2m∗

2(U2 − E)

]
. (5.68)

(b) Often, the pre-exponential factor in (5.68) is set to unity, as was done in
arriving at (5.56). To examine the validity of this change, consider the partic-
ular example of m∗ = 0.3m0, d2 = 2.3 nm, and U2 = 2.7 eV, i.e., data from
Fig. 5.8, and plot the energy dependence of the two terms in (5.68) (the
pre-exponential factor and the exponent), and their product T .
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5.14 In Section 2.11.1 one of the boundary conditions for solving the Effective-mass
Schrödinger Wave Equation made use of the ‘fact’ that 1

m∗
dψ

dx is continuous across
a boundary.

Actually, I don’t know of any rigorous proof of this, but it can be justified
by examining the problem of a simple, step-like potential barrier. Write the
wavefunction on the left of the barrier as ψ = eik1x + re−ik1x and the wavefunction
on the right of the barrier as ψ = teik2x .

Show that the probability density current is conserved at the boundary if the
above boundary condition is used, but not if the effective mass is not included in
the boundary condition.

This conservation of the probability density current is the quantum-mechanical
equivalent of Kirchoff’s Current Law.
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6 np- and Np-junction basics

When neighbouring regions of a homogeneous semiconductor are doped with different
types of dopant, a pn- or np-junction is formed. When the junction is between differ-
ent semiconductors, the junction is labelled either Pn or Np, where the capital letter
denotes the doping type of the semiconductor with the higher bandgap. Semiconduc-
tor/semiconductor junctions play a crucial role in solar cells, LEDs, bipolar transistors,
and HJFETs, and are prominent also in MOSFETs. As we demonstrate in this chapter,
a potential energy barrier forms at this type of junction. In a solar cell, this barrier facil-
itates the separation of photogenerated electron-hole pairs into a current. In the other
devices, the modulation of the junction barrier height by an applied voltage allows the
current to be controlled by external circuitry.

In this chapter the focus is mainly on the np-junction; it is used to achieve an under-
standing of the properties of semiconductor junctions via the drawing of an energy-band
diagram, the construction of which is explained here. We also introduce the concepts of
quasi-neutrality and quasi-Fermi levels. The latter prove useful in describing carrier
concentrations under non-equilibrium conditions. Finally, the Np-junction is described,
and some consequences of the bandgap mismatch are noted.

6.1 np-junction at equilibrium

To construct the equilibrium energy-band diagram for an np-junction, consider first
Fig. 6.1a, in which the separate n- and p- type regions are shown.1 This band diagram
follows from Fig. 2.14, and shows the band edges EC and EV : these were defined in
(2.41), and they are related to the potential energies of electrons and holes, respectively.
The diagram also introduces E0, the force-free vacuum level, which is used as the
energy reference level. It is assigned a value of zero, so all other energy levels on the
band diagram are negative. Physically, E0 is the energy that an electron would have if
it were just removed from the semiconductor, under circumstances where there were
no potential-energy gradients (electrostatic forces) in the semiconductor. The positive
energy required to effect the removal (E0 − EC in the force-free case) is called the
electron affinity of the semiconductor, and takes the symbol χ .

1 Unless otherwise stated, we will only consider abrupt junctions, i.e., junctions in which the doping density
changes abruptly from ND on the n-side, to NA on the p-side.

91



P1: Trim: 174mm × 247mm Top: 0.498in Gutter: 0.664in

pulfrey_cup cuuk824/Pulfrey 978 0 521 51460 6 December 25, 2009 21:51

92 6 np- and Np-junction basics

E
l

=

dn

E

x

V

F2

Fi

C

F1

(a)

E
le

ct
ro

n 
en

er
gy

x

E
E

E

E

E

E

0

E
F

x

χ

(b)
0 dp

V
E (x)

(x)
Fi

E

(x)CE

(x)lE

0

y

Px
N

qVbi

Figure 6.1 (a) Energy-band diagram for separate n- and p-type material. (b) Energy-band diagram
for an np-junction at equilibrium.

Starting from (4.14), and referring to Fig. 6.1a, the Fermi energy can be written as

EF = EC + kB TL ln n0 − kB TL ln NC

= E0 − χ + kB TL ln n0 − kB TL ln NC

= −χ + kB TL ln n0 − kB TL ln NC

≡ µ . (6.1)

The final equation in the set indicates that the Fermi energy is, in these field-free circum-
stances, equal to µ, which is the chemical potential energy2. As χ and NC are material
constants, EF evidently increases as more electrons are added to the semiconductor.

The difference between the Fermi energies in the two separate materials of Fig. 6.1a
can be written as a difference in chemical potential energy

EF1 − EF2 = kB TL ln
n01

n02
= �µ . (6.2)

If the two materials are now joined (Fig. 6.1b), this difference in chemical potential
energy acts as a driving force to equilibrate the two, differently doped regions. The
minimum-energy state of thermal equilibrium is reached when the driving force vanishes,
i.e., when sufficient electrons have been transferred from the n-side to the p-side so that
EF1 = EF2 ≡ EF .

The transferred electrons initially increase the np-product on the p-side near to the
junction, leading to an enhanced recombination rate, and the annihilation of many
electrons and a corresponding number of holes. This creates a region of negative space
charge (acceptor ions) on the p-side of the junction. A region comprising an equal

2 Invariably, the word ‘energy’ is dropped, leaving ‘chemical potential’. The short term comes from thermo-
dynamics, as does the choice of the symbol for it, which is regrettable because we’ve already used µ for
mobility.



P1: Trim: 174mm × 247mm Top: 0.498in Gutter: 0.664in

pulfrey_cup cuuk824/Pulfrey 978 0 521 51460 6 December 25, 2009 21:51

6.1 np-junction at equilibrium 93

magnitude of positive space charge (donor ions) appears on the n-side from the departure
of the transferred electrons. This space-charge region is a source of internal potential
energy, characterized by an internal electrostatic potential difference called the built-in
voltage, Vbi , which is always expressed as a positive quantity. The actual, position-
dependent electrostatic potential ψ(x) is defined in Fig. 6.1b. Note the direction of
the arrow labelling the potential energy (−qψ(x)): it indicates that a positive potential
makes the local vacuum level El negative with respect to the reference energy E0. For
the reference potential (ψ = 0), we arbitrarily set it to be zero at the end of the p-region,
i.e., at x = xP .

In the parts of the material where ψ �= 0, it follows from Fig. 6.1b that the Fermi
energy can be written as

EF = −qψ(x) + µ(x) . (6.3)

Thus EF is now more than just the chemical potential energy: it becomes the elec-
trochemical potential energy, following the description from thermodynamics of a
system possessing both chemical potential energy and electrostatic potential energy.3

In a battery, for example, the difference in electrochemical potential energy between
two electrodes provides the electro-motive force (voltage) to drive electrons (current)
around an external circuit. It also manifests itself as a voltage that can be measured
by a voltmeter. In an np-junction at equilibrium, the fact that there is no difference in
electrochemical potential energy means that there can be no net current in any circuit to
which the semiconductor is attached; nor is there a terminal voltage that can be recorded
by a voltmeter. Thus, Vbi cannot be measured directly.

In an np-junction the built-in voltage develops to precisely the value that is required
to ensure that the drift current of electrons down the potential gradient to the n-side,
exactly cancels the diffusion current of electrons over the barrier from the side of higher
electron concentration to the p-side (see Fig. 6.4c). The same cancellation process
also occurs for the holes. Thus, as we noted in Section 5.5.2, if a diffusive flow of
charge is present at equilibrium, then it must be exactly counterbalanced by a drift
flow.

6.1.1 The built-in voltage

To illustrate the relationship between Vbi and the nullifying of the currents, use (5.37)
and (5.41) for the drift and diffusion currents of electrons, respectively. At equilibrium,
we have

�Je = −qnµe∇ψ + kB TLµe∇n = 0 . (6.4)

Considering the edges of the space-charge region, and, for simplicity, one-dimension:∫ ψ(n−side)

ψ(p−side)
dψ = kB TL

q

∫ n0n

n0p

1

n
dn . (6.5)

3 Again, ‘energy’ is usually omitted, leaving ‘electrochemical potential’.
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Performing the integration yields the standard expression for the built-in voltage of a
homojunction:

Vbi = kB TL

q
ln

n0n

n0p
≡ Vthln

[
ND NA

n2
i

]
, (6.6)

where, for convenience, we have defined the thermal voltage as

Vth ≡ kB T

q
, (6.7)

where T = TL is the lattice temperature. At 300 K, Vth ≈ 26 mV, and for a Si homojunc-
tion with doping densities of 1019 and 1017 cm−3, for example, Vbi = 0.95 V.

6.1.2 Constructing an equilibrium energy-band diagram

The algorithm for constructing the equilibrium energy-band diagram is summarized
here.

1. Draw a solid horizontal line and label it E0. This is the reference energy level.
2. Measure down from this the electron affinity of one distinct region of the structure,

e.g., the n-type region. Draw a solid horizontal line at this energy and label it EC .
3. Add another solid horizontal line EV to indicate the bandgap Eg .
4. Add a dashed horizontal line for the Fermi level at a position that gives some

indication of the doping density, i.e., make it close to EC if the doping density is
high.

5. Repeat the above steps for any other distinct regions. For example, if you have an
np-junction, your diagram should now look like Fig. 6.1a.

6. Now, to connect the two separate parts of the structure, start with a dashed horizontal
line across the width of the entire structure: this is EF .

7. Draw EC and EV for each part of the device, leaving a gap at the junction, where
there would otherwise be a discontinuity in these energy levels.

8. Choose one side of the device to be the reference side for the electrostatic potential,
and add-in El = E0 for this side of the device. In Fig. 6.1b we chose the p-side for
the reference.

9. On the non-reference side, add-in a solid line for El at an energy χ above EC .
10. Across the interfacial region between the two parts of the structure, join-up El with

a smooth curve, and E0 with a horizontal line. The transition in El(x) must be
continuous because it represents the change in electrostatic potential.

11. For each region in turn, extend the band edges to the metallurgical junction by
drawing lines that are parallel to the vacuum level. If the two regions of the device
structure are made from the same material, each band edge should join-up smoothly
across the interfacial region. This is the case for the homojunction shown in Fig. 6.1b.
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For a junction between dissimilar materials, there may be discontinuities in EC and
EV at the interface, but there cannot be discontinuities in the vacuum level.4

6.1.3 Potential profile

The potential ψ is defined from Fig. 6.1b:

−qψ(x) = El(x) − E0 . (6.8)

In a homogeneous system, EC (x) tracks El (x),5 so

−qψ(x) ≡ EC (x) − EC (xP ) . (6.9)

It follows from (4.14) that, when Maxwell-Boltzmann statistics apply,

n0(x) = n0(xP )eψ(x)/Vth

p0(x) = p0(xP )e−ψ(x)/Vth . (6.10)

Employing these in Poisson’s Equation from our master set of equations (5.24), and
considering one dimension for simplicity:

− d2ψ

dx2
= ρ

ε

= q

ε

[
p0(xP )e−ψ(x)/Vth − n0(xP )eψ(x)/Vth + ND − NA

]
, (6.11)

where ρ is the volumetric charge density.
This non-linear equation can be solved numerically to find ψ(x), provided n0 and

p0 at the end of the p-side of the device are known. We’ll discuss the nature of
metal/semiconductor contacts in Section 11.1, but a common case is that of an ohmic
contact. Such a contact allows both electrons and holes to flow easily into and out of
the semiconductor, so the carrier concentrations at the semiconductor/metal interface
are maintained at their equilibrium values. In this case, n0(xP ) and p0(xP ) are eas-
ily found (Section 4.4), and the boundary conditions are simply, ψ(−xN ) = Vbi and
ψ(xP ) = 0. Applying these conditions to a silicon np-junction with ND = 1018 cm−3

and NA = 1017 cm−3, the solution for ψ(x) from (6.11) is shown in Fig. 6.2. The built-in
voltage is 0.9 V in this case, and it can be seen that it is dropped mostly across the
lesser-doped portion of the space-charge region.

4 A discontinuity in the vacuum level would imply a discontinuity in electrostatic potential, which would
mean an infinite electric field. This would create an infinitely strong force on neighbouring charges, which
would then be rapidly re-arranged to reduce the field.

5 In a heterogeneous system, as mentioned in the previous subsection, EC (x) does not necessarily track El (x)
throughout the device, so (6.8) must be used for the potential, rather than (6.9).



P1: Trim: 174mm × 247mm Top: 0.498in Gutter: 0.664in

pulfrey_cup cuuk824/Pulfrey 978 0 521 51460 6 December 25, 2009 21:51

96 6 np- and Np-junction basics

0 0.050.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ot

en
tia

l (
V

)

Figure 6.2 Potential profile for a silicon np-junction with ND = 1018 cm−3 and NA = 1017 cm−3,
under equilibrium conditions. The actual metallurgical junction between the n- and p-regions is
shown by the dashed line. The solution is from the master set of equations (5.24), as
implemented by the commercial solver ATLAS. At equilibrium, this set of equations reduces to
(6.11) for ψ .

6.2 The Depletion Approximation

The space-charge region at the np-junction plays such an important role in the operation
of many semiconductor devices that it is helpful to have a way of estimating its width
without resorting to numerical methods of computation. This is achieved by making the
Depletion Approximation, namely

n(x), p(x) � ND −xdn ≤ x ≤ 0

n(x), p(x) � NA 0 ≤ x ≤ xdp , (6.12)

where the x-coordinates are from Fig. 6.1b. This approximation turns the smooth varia-
tions in n(x) and p(x) across the junction into abrupt changes at −xdn and xdp, respec-
tively, as shown in Fig. 6.3. The beauty of the approximation is that it turns (6.11) into
two linear equations that are easily solved, and which enable the width of the so-called
depletion region (W = xdn + xdp) to be determined. The equations are

d2ψ

dx2
= −q ND

ε
− xdn ≤ x ≤ 0

d2ψ

dx2
= q NA

ε
0 ≤ x ≤ xdp . (6.13)
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Figure 6.3 Profile of the charge density ρ = (p + ND − n − NA)/q for a silicon np-junction with
ND = 1018 cm−3 and NA = 1017 cm−3, under equilibrium conditions. The full numerical
solution from (5.24), as implemented by ATLAS, is shown by the solid line. The profile from the
Depletion Approximation is shown by the dashed line.

A further aspect of the Depletion Approximation (DA) is that it assumes that there is
no voltage drop in the regions outside of the depletion region. This assumption provides
the boundary conditions required for the solution of (6.13):

− dψ

dx
= 0 x = −xdn

−dψ

dx
= 0 x = xdp

ψ = 0 x = xdp . (6.14)

The solution is

ψ(−xdn) − ψ(xdp) ≡ VJ = q

2ε

[
ND x2

dn + NAx2
dp

]
, (6.15)

where VJ is the potential difference across the junction region; it equals Vbi in the
equilibrium case. It should be clear that the magnitudes of the charges in the two parts
of the depletion region are equal:6

q ND xdn A = q NAxdp A , (6.16)

6 Formally, this follows from Gauss’s Law and the continuity of the dispacement �D in the absence of free
charges at the actual interface.
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where A is the cross-sectional area of the device. Putting all these facts together, the
width of the depletion region can be written as

W =
√

2ε

q
VJ

(
1

ND
+ 1

NA

)
. (6.17)

For our Si example with ND = 1018 cm−3 and NA = 1017 cm−3, and considering the
equilibrium case, we find that Vbi = 0.9 V, W = 114 nm, xdn = 10 nm, and xdp =
104 nm. The validity of the DA in the equilibrium case for this junction can be assessed
from Fig. 6.3, where the charge densities predicted by the DA and the full numerical
calculation are compared. Notice that the majority carrier concentrations do not change
in the abrupt manner assumed by the DA. This is to be expected on physical grounds:
if it were otherwise there would be infinite diffusion currents. Also note that, for the
moderately high donor doping density used in this example, n is still significant at the
metallurgical junction (x = 0), so the charge density ρ on the n-side of the junction
never attains the value of q ND assumed by the DA. Also, the electron injection into the
p-type region is sufficient to push ρ just inside the p-region to a value slightly below the
value of −q NA assumed by the DA. This feature would be more pronounced if ND were
higher.

Despite these discrepancies, the DA is widely employed, primarily to estimate the
width of the space-charge region. We will use it for this purpose in all of the devices we
study.

6.3 np-junction under bias

The equilibrium energy-band diagram of Fig. 6.1b is repeated in Fig. 6.4a for conve-
nience. The Fermi level has been extended on either side of the device to represent the
metallic contacts, to which leads would be attached and taken to the external circuit.
Let us apply a voltage Va between the two contacts. Taking the p-side contact as our
zero reference for electrostatic potential, Va is negative and the total potential difference
across the device is

ψ(−xN ) − ψ(xP ) = Vbi + Va . (6.18)

In metallic elements with an odd number of valence electrons per primitive unit cell,
as discussed in Section 2.7, the highest occupied band is half-filled with electrons. The
number of electrons is huge,7 and means that any electron exchange between a metallic
contact and its adjoining semiconductor can occur without significantly disturbing the
metal from its thermal-equilibrium state. Thus, the application of bias to an np-junction is
manifest as a difference in electrochemical potential between the metallic end-contacts,
and can be expressed as

EF (−xN ) − EF (xP ) = −qVa , (6.19)

7 For Al, the number of electrons ‘available for conduction’ is 1.8 × 1023 cm−3.
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Figure 6.4 (a) Equilibrium band diagram of Fig. 6.1, showing the Fermi levels in the metallic
contacts. Note that, by not connecting the band edges in the semiconductor to the band edges in
the metallic contacts, we have tacitly assumed that none of the applied voltage is dropped across
the contact/semiconductor interfaces. This is a good assumption for the ohmic contacts
considered here. (b) Energy-band diagram under an applied forward bias Va = −[EF (−xN )
−EF (xP )]/q. (c) Equal and opposite flows of electrons across the junction at equilibrium.
(d) Net flow of electrons from left to right due to lowering of the potential barrier at the junction.
By drawing hemi-Maxwellian distributions we are assuming that near-equilibrium conditions are
applicable.

where the x-coordinates refer to Fig. 6.4b. EF (xP ) is taken as the reference energy for
the electron potential energy −qVa due to an applied voltage Va . It follows that Fig. 6.4b
is drawn for the case of Va < 0. Such a situation, when the applied voltage across an np-
junction is such that the applied potential on the n-side contact is negative with respect
to that on the p-side contact, is said to be one of forward bias. The converse situation
is one of reverse bias.

We now have to consider how this applied voltage is distributed (dropped) across
the device. For an initial guess, refer to Section 5.4.2, and make use of the fact that the
conductivity is much lower in the space-charge region than in the other regions of the
device, due to the relative lack of carriers in the former region. Thus, we would expect
that most of Va would be dropped across the more resistive space-charge region. For
the forward-bias case illustrated in Fig. 6.4, the potential barrier at the junction would
be lowered by ≈|Va|. This lowering would enable more electrons to pass from the n-side
to the p-side of the junction, resulting in a net current. Now, let’s consider a case where
this current density is rather large, say 104 Acm−2. The flow of electrons constituting
this current exists also in the n-type region of the device to the left of the depletion
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region. Let us take a doping density of 1019 cm−3 for this region and compute the field
needed to support the chosen current density. If you do this, (see Exercise 6.1), then
you should find that the field is only ≈6 mV µm−1. Thus, in microelectronics, the actual
voltage dropped across this region will be very small compared to the value for Va

of about 0.8–1.0 V, which would be typical for a Si np-junction delivering the stated
current density. The guess of Va being dropped entirely across the space-charge region
is, therefore, a very good one.

6.3.1 Constructing a non-equilibrium energy-band diagram

As an example of how to turn a band diagram at equilibrium into one at non-equilibrium,
consider the differences between Fig. 6.4a and Fig. 6.4b. The former is constructed
according to the steps in Section 6.1.2. Proceed as follows:

1. Copy the portion of the band diagram on the reference side of the junction (the p-side
in our case), but don’t draw-in EF .

2. On the n-side, draw a new horizontal line for El at a depth of −qVa below the previous
position of El . In our forward-bias example this will raise El on the n-side above its
equilibrium position.

3. Complete the n-side of the diagram by adding-in EC at χ below El , and EV at Eg

below EC .
4. You know that El must join-up smoothly across the junction, but before you actually

do this, consider how the width of the space-charge region has changed because
of the applied bias. Forward bias reduces the potential drop across the junction, so
less charge is needed to support the potential difference, and the space-charge region
shrinks. So, extend the horizontal portions of El a bit further towards the metallurgical
junction before you join them up. Repeat this for the band edges. In reverse bias, the
procedure is the same, but the larger voltage drop across the junction means that the
depletion region is widened relative to its equilibrium value.

6.3.2 Quasi-neutrality

The fact that there is only a minuscule field in the regions of an np-diode outside of the
space-charge region suggests that there is very little deviation from charge neutrality
within them. To examine this suggestion, consider the response of the majority carrier
holes to the injection of electrons from the n-side of the junction (see Fig. 6.5). The
presence of new negative charge at some point beyond the edge of the depletion region on
the p-side attracts holes, which flow in from the right-hand contact. Eventually, the holes,
driven by the tiny electric field in this region, reach the site of the excess electrons. The
charge of +q�p that they add to this site, balances the charge of −q�p at the contact
from which they originated. Thus, the region of length L between the contact and the
excess electrons is a bit like a parallel-plate capacitor of capacitance C . This region also
has resistance R. The associated RC time constant defines the dielectric relaxation
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Figure 6.5 Showing the movement of holes towards an excess electron concentration in order to
restore charge neutrality in a p-type region.

time τD:

RC |QNR = L

σ A

ε A

L

= ε

σ
≡ τD , (6.20)

where A is the cross-sectional area, σ is the conductivity, ε is the permittivity, and
QNR stands for quasi-neutral region. For a more rigorous derivation of this result see
Fonstad [1].

The implication of this is that the majority carriers will respond to any changes in
charge in a time of the order of τD . For example, in p-type silicon with a doping density of
NA = 1018 cm−3, the dielectric relaxation time is ≈50 fs. This is a very short time, and
it means that unless we are interested in what happens during time periods of this scale,
then the regions outside of the depletion region can be considered as being effectively
neutral. We generally consider them to be so in this book. Thus, in a quasi-neutral region
under low-level injection of minority carriers, the majority carrier concentration remains
very close to its equilibrium form, and is subjected to a very small field. The distribution
of the majority carriers, therefore, fits the prescription of a displaced Maxwellian (see
Fig. 5.4).

To return to our question: where is the applied voltage dropped? We can now say that
in an np-diode of the bulk type we have been considering, we have Vaj ≈ Va , where
Vaj is the portion of the applied voltage that is actually dropped across the junction.
This usually holds in bipolar devices, for which Va is coupled resistively to the actual
junction. An exception would be when the current were so high that the I R-voltage
drop in the quasi-neutral regions could not be neglected. This can happen in high-power
bipolar transistors (see Section 16.3.1). In MOSFETs, the coupling of Va to the junction
occurs capacitively, and we’ll find in Chapter 10 that Vaj �= Va in the ON-condition. To
allow for all possibilities, we define Vaj as

Vaj + Vbi ≡ VJ = ψ(−xdn) − ψ(xdp) . (6.21)
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Figure 6.6 The np-junction in reverse bias. (a) Note the positive applied bias (−qVa = EF (−xN )
−EF (xP )). (b) Illustrating the blocking action of the junction as regards the electron flux from
the left.

6.3.3 Reverse bias

In the reverse-bias case, a positive potential is applied to the n-side contact with respect
to the p-side contact, which we take to remain grounded. Thus, the barrier height of the
junction q(Vbi + Vaj ) is increased. The associated potential difference is supported by a
widening of the space-charge layer, as illustrated in Fig. 6.6. Mathematically, the actual
width follows directly from an extension of (6.17):

W =
√

2ε

q
(Vbi + Vaj )

(
1

ND
+ 1

NA

)
. (6.22)

This expression also holds for forward bias (Vaj < 0).
If the barrier becomes so high that few electrons on the n-side have enough energy

to diffuse over the barrier to the p-side, then the electron current is carried mainly
by the equilibrium concentration of minority carriers on the p-side drifting down the
potential barrier (see Fig. 6.6b). There are not many of these electrons, so the reverse-
bias current is very small. To a first approximation, it is given by q n0p

2 2vR , and is bias-
independent. For a p-side doping density of 1017 ionized acceptors per cm3, the current
density is less than a nanoampere per cm2. This should be contrasted with the forward-
bias current, which is exponentially dependent on Vaj , and can be very large (see
Section 6.6).

6.4 Quasi-Fermi levels

Our reasoning so far has led to the conclusions that, in the quasi-neutral regions, even in
an out-of-equilibrium situation when large currents are present, the potential profile is
essentially flat, and the majority carrier concentration is close to its equilibrium value.
These ‘facts’ suggest that, in the quasi-neutral regions, the carrier concentrations out
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of equilibrium can be described by equations of an equilibrium form. Of course, the
Fermi level cannot be used in this description of the semiconductor because equilibrium
conditions do not apply. Instead, the Maxwell-Boltzmann equations for carrier concen-
trations, (4.23), are written in terms of two reference energy levels, called quasi-Fermi
levels:

n = ni exp

(
EFn − EFi

kB TL

)

p = ni exp

(
EFi − EFp

kB TL

)
, (6.23)

where EFn is the quasi-Fermi level for electrons and EFp is the quasi-Fermi level for
holes. The concept of quasi-Fermi levels was first introduced by Shockley [2, p. 308].

It is emphasized that these quasi-Fermi levels are defined by (6.23), and do not have a
basis in thermodynamics, as the Fermi level does. EFn and EFp are artefacts, the values
for which must be consistent with the out-of-equilibrium carrier concentrations, whereas
EF helps define an equilibrium concentration by dictating the probability of states being
filled. Thus, if n is known, then EFn is defined. However, it must be stated that (6.23) is
approximate in the sense that it implies a distribution of carriers that can be described
by a simple exponential relationship involving a reference energy and the ‘Boltzmann
energy’ kB TL . Such a distribution is an equilibrium distribution, so it follows that quasi-
Fermi levels should strictly only be used in situations where the carrier distributions do
not stray too far from their equilibrium forms.

We have argued that this condition is met by the majority carrier concentration in
the quasi-neutral region. The ‘leap-of-faith’ that is often made is that (6.23) applies not
only to majority carriers in the QNR, but to all carriers everywhere in the device. In the
devices considered in this book, scattering usually ensures that this assumption is not
seriously violated. Equation (6.23) is widely used in commercial device simulators as
its Maxwell-Boltzmann form is very appealing for computational purposes.8

One insightful result that follows immediately from (6.23) concerns the pn-product:

n(x)p(x) = n2
i exp

(
EFn(x) − EFp(x)

kB TL

)
. (6.24)

This equation indicates that in regions where the n(x)p(x) product differs from its
equilibrium value of n2

i , then there will be a separation of the quasi-Fermi levels. A
large separation can be expected in the depletion region under forward-bias conditions
because an excess of both electrons and holes will arise, due to increased injection from
the n-side and p-side, respectively, on account of the lowering of the potential barrier at
the junction (see Exercise 6.2).

Another utility of the quasi-Fermi level concept is that it allows a convenient extension
of the n0(ψ) and p0(ψ) expressions to the non-equilibrium case. From (4.14), (6.10),

8 For degenerate conditions, (6.23) is often modified in commercial device simulators to better represent
Fermi-Dirac statistics.
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Figure 6.7 Energy-band diagram for the numerical simulation from (5.24) by ATLAS of an
np-junction with n-side length of 0.02 µm and doping density 1019 cm−3, and p-side doping
density 1017 cm−3 and length >0.08 µm. The applied bias is Va = −0.8 V. The solid lines are the
conduction- and valence-band edges. Note the near-constancy of EFn across the junction
depletion region. EFp is separated from EFn in the junction region by qVaj ≈ qVa .

and (6.23) it follows that

n = n0(xP ) exp

(
ψ

Vth

)
exp

(
EFn − EF

kB TL

)

p = p0(xP ) exp

(
− ψ

Vth

)
exp

(
EF − EFp

kB TL

)
. (6.25)

Defining the quasi-Fermi potentials for electrons and holes as

− qφn(x) = EFn(x) − EF

−qφp(x) = EFp(x) − EF , (6.26)

allows the out-of-equilibrium carrier concentrations to be written in a compact form:

n = n0(xP ) exp

(
ψ − φn

Vth

)

p = p0(xP ) exp

(
φp − ψ

Vth

)
. (6.27)

An immediately useful application of these equations is to substitute them into the
expression for the total current, as given by the sum of the electron and hole currents
from the Drift-Diffusion Equation (5.15). Doing this leads to

�JT = �Je + �Jh = −qµen∇φn − qµh p∇φp . (6.28)

This emphasizes that if there is no gradient in either of the quasi-Fermi levels, there is
no current.
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To illustrate the profile of the quasi-Fermi levels in a forward-biased np-junction,
consider Fig. 6.7. The left-hand side contact to the n-region was defined as being
‘ohmic’ (see Section 7.4.1). This means that n and p at the contact are maintained at their
equilibrium values. Thus, the two quasi-Fermi levels come together at this point. Note
how the majority-carrier quasi-Fermi levels stay essentially constant at their equilibrium
levels through their respective quasi-neutral regions. Note also the constancy of the
band edges in the QNRs. These facts confirm that the majority carrier concentrations
remain essentially at their equilibrium values throughout the QNRs (at least for low-level
injection). Note also that the constancy of the quasi-Fermi levels persists through the
space-charge region.

6.5 Shockley’s Law of the Junction

The statements about the near-constancy of the quasi-Fermi levels when there is an
applied bias may bother you, as we stated via (6.28) that a gradient in quasi-Fermi levels
is associated with a net current. But note, in that equation the gradient ∇φ always appears
in a product term with the carrier concentration. So, when the carrier concentration is
very high, such as for electrons in the quasi-neutral n-region, only a very small gradient
in φn is needed. This is another way of saying the field must be small in this region, as
we noted in Section 6.3, wherein we used this fact to say Vaj ≈ Va . In the space-charge
region, one or both of the carrier concentrations are also quite high, even though they may
be small relative to the doping concentrations. Therefore, again, it is not unreasonable
that the quasi-Fermi levels be nearly constant across the depletion region. Shockley
recognized this [2, p. 312], and exploited the fact to derive an insightful expression for
the minority carrier concentration injected across an np-junction:

n(xdp) = n0(xP ) exp

(
ψ(xdp) − φn(xdp)

Vth

)

= n0(xP ) exp

(
ψ(xdp) − φn(−xdn)

Vth

)

= n0(xP ) exp

(
ψ(xdp) − ψ(−xdn) + Vbi )

Vth

)

= n0p exp

(
− Vaj

Vth

)
, (6.29)

where n0p is the equilibrium electron concentration on the p-side. Shockley called this
result ‘the key equation of the rectification theory’. It is a fair description because the
observed exponential dependence of current on voltage in an np-junction follows directly
from it.

Recalling that Vaj < 0 for forward bias, this equation informs that injection across
the lowered barrier leads to an exponential rise in the minority carrier concentration at
the edge of the junction. Arriving at the minority carrier boundary condition in this way
is said to be invoking Shockley’s Law of the Junction.
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Finally, one other way to accept the near-constancy of EFn and EFp across the space-
charge region is to realize that the current in a forward-biased pn-junction diode, although
potentially large absolutely, is generally small relative to the massive current of which
a majority-carrier hemi-Maxwellian distribution is capable (see Section 4.5.2). So, the
departure from equilibrium is usually slight, and it is reasonable to view the situation as
one of quasi-equilibrium, for which the term ‘quasi-Fermi level’ is appropriate.

6.6 The ideal-diode equation

One useful application of Shockley’s Law of the Junction is to set one of the boundary
conditions for deriving an expression for the J-V characteristic of an ideal np-junction
diode. Such a diode has the following features:

� no gradients in carrier temperature. This means that the Drift-Diffusion Equation can
be used for the current.

� negligible fields in the quasi-neutral regions. This means that minority carrier transport
in these regions is due only to diffusion. It also means that the applied voltage Va is
dropped entirely across the space-charge region.

� quasi-neutral regions that are so long that the injected minority carriers all recombine
before reaching the end contacts.

� injection is sufficiently low that the quasi-Fermi levels are constant across the space-
charge layer. This means that (6.29) can be used as a boundary condition.

� no recombination-generation in the space-charge region. This means that the electron
current at x = xdp and the hole current at x = −xdn can be added to get the total
current.

� no generation other than thermal generation.
� no doping density gradients on either side of the junction. This means that n(xdp) ≡

n0p, the equilibrium electron concentration in the p-side quasi-neutral region.

Applying these conditions to the electrons injected into the p-region, for example, we
have, from the time-dependent form of the master set of equations (5.24)

Je = q De
∂n

∂x
and

∂n

∂t
= 1

q

∂ Je

∂x
− n − n0p

τe
. (6.30)

Thus, at steady-state, we have

0 = d2n

dx2
− n − n0p

L2
e

, (6.31)

where Le = √
Deτe is the electron minority-carrier diffusion length. It is a measure

of how far the injected electron travels in the p-region before it recombines. The general
solution to (6.31) is

n(x) − n0p = Aex/Le + Be−x/Le . (6.32)
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The relevant boundary conditions are:

n(xP ) ≡ n(∞) = n0p

n(xdp) = n0pe−Va/Vth . (6.33)

The resulting solution for the electron concentration is

n(x) − n0p = n0p

(
e−Va/Vth − 1

)
e(xdp−x)/Le . (6.34)

Thus, the electron current at the edge of the space-charge layer on the p-side is

Je(xdp) = −qn0p

(
e−Va/Vth − 1

)
.
De

Le
, (6.35)

where the terms have been grouped to emphasize the general fact that the current
density is a charge density multiplied by a velocity. The latter is De/Le in this case, and
is sometimes called the diffusion velocity.

The corresponding expression for the hole current density is

Jh(−xdn) = −qp0n

(
e−Va/Vth − 1

)
.
Dh

Lh
, (6.36)

Thus the J-V relation for an ideal diode is

J = −q

(
n0p

De

Le
+ p0n

Dh

Lh

)(
e−Va/Vth − 1

)
≡ J00

(
e−Va/Vth − 1

)
, (6.37)

where J00 is the saturation current density for an ideal diode, and recall that Va < 0 in
forward bias. Despite the many assumptions that are invoked to obtain this expression,
it is very informative because it captures the essence of a diode: an asymmetrical
characteristic, with a reverse-bias current that is small and a forward-bias current that
increases exponentially with voltage.

To get a ‘feel’ for the magnitudes of the current densities, consider an np-diode
with ND = 1019 cm−3 and NA = 1017 cm−3. To evaluate the diffusivities, use (5.30)
for mobility and the near-equilibrium form of (5.17), the Einstein relation. To get the
minority-carrier diffusion lengths, use L = √

Dτ after evaluating the minority carrier
lifetimes from (3.21). To get the minority carrier concentrations use (4.20), after sub-
stituting for ni from Table 4.1. Put the numbers into (6.37), and you should find that
the reverse-bias current density (≈ J00) is 1.7 pA cm−2, and is dominated by the elec-
tron component. For this diode, (6.6) informs that Vbi = 0.96 V. For a forward bias of
−0.8Vbi , J is 11.4 A cm−2. That’s quite some asymmetry!

The ideal-diode derivation is also useful in that it highlights the position-dependence
of the electron and hole contributions to the total current density JT . Fig. 6.8 illustrates
the steady-state situation for a single-loop circuit in which the diode is so long that
all carriers injected from the contacts recombine within the bulk semiconductor. JT is
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Figure 6.8 Illustration of the position-dependence of the electron and hole contributions to the
total current in a forward biased np-diode. Recombination events in the two quasi-neutral
regions, and in the space-charge region, are indicated by the crosses. The excess carriers
consumed in the recombination events are replenished by carriers injected from the contacts.

constant, but is carried entirely by electrons near to the negative contact, and entirely by
holes near the positive contact.

6.6.1 Deviations from ideality in diodes

Some features of practical diodes, and of the circumstances in which they operate, are
not consistent with ideal-diode behaviour, as we now briefly indicate.

� Quasi-neutral regions are often short, so not all injected minority carriers recombine
before reaching the contact. Appropriate boundary conditions must be used, and the
saturation current density will be different from the ideal case. An example of this is
in the solar cell (see Section 7.4.2).

� For very high currents, the quasi-Fermi levels in the space-charge region may deviate
significantly from constant values. This will invalidate the use of Shockley’s Law of
the Junction to get the minority-carrier concentrations at −xdn and xdp.

� High currents may also mean high-level injection of minority carriers, and a possible
loss of charge neutrality in parts of the erstwhile quasi-neutral regions. This leads to
local fields outside of the depletion region, in which case not all of the applied voltage
Va will appear across the junction. This can be represented in the diode equation
by replacing Va with Va/γ , where γ > 1 is known as the diode ideality factor.
Thus at high bias, the diode current still increases exponentially, but the dependence
on bias is weaker. We encounter this situation in high-power bipolar transistors (see
Section 16.3.1).

� At low bias, it may be appropriate to include the current due to the recombination
of electrons and holes in the space-charge region. This recombination mechanism
usually leads to values of saturation current density greater than J00, and to a value of
γ ≈ 2 [3].
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Figure 6.9 Equilibrium energy-band diagrams for two heterojunctions. (a) Type I Np-junction. (b)
Type II pN-junction.

� Any electron-hole pairs generated in the space-charge region are likely to be separated
by the junction field, leading to a current in the reverse-bias direction. At large reverse
bias, the space-charge region may be so wide that this generation current is much
larger than the ideal diode saturation current.

� At even higher reverse bias, carriers traversing the space-charge region may gain
sufficient kinetic energy to impact ionize lattice atoms, leading to current multiplica-
tion and avalanche breakdown. We’ll meet this phenomenon again in the chapter on
high-power transistors.

6.7 Np-junction electrostatics

The two intrinsic properties of a semiconductor that are important for determining the
properties of a semiconductor/semiconductor heterojunction are the electron affinity
and the bandgap. The important extrinsic property is the doping density. When all of
these properties are known, the energy-band diagram can be constructed following the
procedures in Section 6.1.2 and Section 6.3.1. The results at equilibrium for two cases
are shown in Fig. 6.9.

Considering isolated semiconductors, a Type I heterojunction is one in which the
wider bandgap ‘straddles’ the smaller bandgap, and if the two bandgaps are ‘staggered’,
the heterojunction is categorized as Type II. In the examples shown, EgN > Egp and
the difference between the two cases arises because in Fig. 6.9a χN < χp, whereas in
Fig. 6.9b χN > χp. In both instances the built-in voltage is

qVbi = qVN + qVp = qV2 − qV1 + (χp − χN ) , (6.38)

where the various energies are noted on Fig. 6.9. Making use of (4.14), which implies
Maxwell-Boltzmann statistics, and of (6.6) for the built-in voltage of a homojunction, it
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follows that

qVbi = kB T ln

[
NCp

NC N

n0N

n0p

]
+ (χp − χN )

≡ qV np,2
bi + kB T ln

[
NCp

NC N

]
+ (χp − χN ) , (6.39)

where T ≡ TL , and V np,2
bi is the built-in voltage of a homojunction made from the

lower bandgap material with the same doping densities as used for the heterojunctions
under consideration. If the two semiconductors of the heterojunction have similar
density-of-states electron-effective-masses, then the second term in (6.39) can be
ignored, and we see that Vbi for the heterojunction will be greater than that for the
corresponding homojunction in the Type I case, and lower in the Type II case.

6.7.1 Energy band offsets

Note from Fig. 6.9 that the local vacuum level El(x) varies smoothly with position, as
befits a parameter that indicates the electrostatic potential.9 However, because of the
difference in electron affinities, the band edges EC (x) and EV (x) show discontinuities
at the interface between the two semiconductors of the heterojunction. Defining these
discontinuities as the band offsets, and labelling them as �EC and �EV , respectively,
it can be appreciated from Fig. 6.9, that

�EC + �EV = EgN − Egp ≡ �Eg , (6.40)

where all the �’s are taken to be positive quantities. Thus,

�EC = |χ2 − χ1| . (6.41)

6.7.2 Junction space-charge region

The potential VJ across the space-charge region at an Np-heterojunction is given by
(6.15), but modified to allow for different permittivities of the two semiconductors.
Equation (6.16), which equates the ionic charge on each side of the junction, also holds,
provided there is no free charge density at the interface between the two semiconduc-
tors.10 It then follows that the two components of the space-charge region are

xd N =
√

2VJ εN εp NA

q ND(εN ND + εp NA)
and xdp =

√
2VJ εN εp ND

q NA(εN ND + εp NA)
. (6.42)

9 Recall that El (x) − E0 = −qψ(x), where ψ(x) is the potential.
10 This is something that has to be considered in heterojunctions due to the possibility of charge being trapped

at localized energy levels within the bandgap, which might arise from any interruption in periodicity of the
crystal lattice.
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Figure 6.10 Energy-band diagram of a forward-biased Type I Np-junction, illustrating (within the
shaded circle) the splitting of the electron quasi-Fermi level at the abrupt Np junction. VB E ≡ Va .

6.7.3 Quasi-Fermi-level splitting

In the case of heterojunctions with a conduction-band ‘spike’ at the interface, as in the
Type-I Np junction shown in Fig. 6.9, the interesting phenomenon of quasi-Fermi-level
splitting arises, as we now briefly explain.

In any junction, the application of a forward bias reduces both |qVN | and |qVp|. In the
junction under consideration, this has the effect of reducing the barrier to electron flow
into the base, while increasing the barrier to electron flow from the base. This leads to a
situation where the net electron flow may not be small compared to each of the counter-
directed flows. In other words, unlike in a homojunction, the flow of electrons cannot
be considered as a minor perturbation of the equilibrium condition. This significant
departure from equilibrium is recognized by allowing the electron quasi-Fermi level (in
this example) to be discontinuous at the interface, as illustrated in Fig. 6.10.

The forward and backward electron current densities injected over the potential barrier
are written as hemi-Maxwellian fluxes

JeF = −q
n(0−)

2
2vR and JeB = q

n(0+)

2
2vR , (6.43)

respectively, where the carrier concentrations are taken at either side of the top of
the barrier at x = 0. Employing Maxwell-Boltzmann statistics, these concentrations
are:

n(0−) = n(−xd N )e−VN /Vth and n(0+) = n(xdp) e(qVp−�EC )/kB T , (6.44)

where the edges of the depletion region are −xd N and xdp.
At equilibrium, n(0) = n(0+), and (VN + Vp) = Vbi . Further, assuming that low-

level-injection conditions apply to the electron flux from region 2 to region 1, we can
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assert that n(−xd N ) ≈ n0(−xdn). Putting these facts together we have for the current

Je,1 ≡ JeF − JeB = −qγ
[
n0(xdp)e−Va/Vth − n(xdp)

]
(6.45)

where γ = vRe−�En/kB T .
Turning now to Je,2 in Fig. 6.10, this diifusive current can be written as

Je,2 = q
De

W
[n(x2) − n(xdp)]

≡ −q
De

W
[n(xdp) − n0(x2)], (6.46)

where x = x2 is the position of the end-contact to region 2, and W = (x2 − xdp) is the
width of the quasi-neutral part of this region. The first version of the equation follows
from assuming that there is no recombination in region 2, and the second version implies
that the contact at the end of region 2 is ohmic.11

Assuming no recombination in the space-charge region, Je,1 and Je,2 can be equated,
thereby yielding a boundary condition for n(xdp):

n(xdp) = n0p

[
e−Va/Vth + De

Wγ

1 + De
Wγ

]
, (6.47)

where n0p = n0(xdp) = n0(x2), i.e., region 2 has been assumed to be uniform. This
equation shows how (6.29), Shockley’s Law of the Junction for a homojunction, has
to be modified to describe a heterojunction. The new equation, via γ , considers both
the finite velocity vR of carriers crossing the junction, and the presence of an energy
difference �En at the interface. In a homojunction, the latter is zero, and it is customary
to imply that the former is infinite. Under these conditions, (6.47) reduces to (6.29). Thus,
we now see that the ideal-diode treatment of the homojunction actually neglected any
bottleneck to electron transport caused by the junction itself. Accounting for restricting
features, such as a finite velocity and a band spike, reduces electron injection into the
p-region.

Another way of characterizing the impeding effect of the junction itself is via quasi-
Fermi-level splitting. To see this, note that

n(xdp) = NCpe(EFnp−EC (xdp))/kB T (6.48)

n0(xdp) = NCpe(EFp−EC (xdp))/kB T ,

where EFp = EF and we have assumed that there is no voltage drop in the quasi-neutral
p-region. Noting from Fig. 6.10 that (EFnN − EFp) = −qVa , it follows from (6.47) and
(6.48) that the splitting of the electron quasi-Fermi level at the interface is

�EFn ≡ EFnN − EFnp = −qVa − kB T ln

[
n(xdp)

n0p

]
. (6.49)

11 See Section 7.4.1 for the definition of an ohmic contact.
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Using this in (6.46):

Je,2 = −q
De

W
n0p

[
e−(qVa+�EFn )/kB T − 1

]
. (6.50)

Compare this current with the electron current component of the ideal homojunction
diode in (6.37); recall that Va < 0 in forward bias; and then it will be clear that
quasi-Fermi-level splitting reduces the driving force for the diffusion current. Quasi-
Fermi-level splitting can be reduced in a Type-I heterojunction by using materials with the
same electron affinity, in which case �Ec = 0. One such combination is N -In0.49Ga0.51P
and p+-GaAs; we encounter this in Chapter 9 as the emitter/base part of an HBT. Contrar-
ily, �EFn can be very high in metal/semiconductor heterojunctions, leading to rectifying
contacts called Schottky barriers, which we’ll discuss in Section 11.1.

6.8 Emitter injection efficiency

In anticipation of using an N p-junction at the emitter/base interface of a heterojunction
bipolar transistor (Chapter 9), we call the N -region the emitter and the p-region the
base. Our purpose here is to estimate the emitter injection efficiency of a Type-I
heterojunction diode: this is the ratio of the injected electron emitter current to the total
current. The electron current is given by (6.50) and the hole current is taken from (6.37).
The appropriate form of the latter is

Jh(−xdn) = −q
Dh

Lh
p0N

[
e−qVa/kB T − 1

]
. (6.51)

The bandgaps of the two materials enter via the equilibrium carrier concentrations,
(4.19) and (4.20), and we will assume that the effective densities of states are the same
in both materials.12 In forward bias the ‘−1’ terms in the expressions for the current
components can be dropped, leading to the following expression for the emitter injection
efficiency:

ηemitter =
[

1 + NB Dh WB

NE De Lh
e−(�Eg−�EFn )/kB T

]−1

, (6.52)

where the subscripts E and B refer to the emitter and the base, respectively, and the
bandgap difference �Eg = (EgN − Egp).

The dominant term in (6.52) is the exponential term; it can be appreciated that, even
allowing for quasi-Fermi-level splitting, the presence of a large bandgap difference can
enable attainment of extremely high emitter injection currents.13 This holds true in
modern HBTs, even though they generally have NB � NE for reasons discussed in
Section 14.6.

12 This is a reasonable assumption for closely related materials such as AlGaAs/GaAs and InGaP/GaAs.
13 Please do Exercise 6.10 to appreciate how high ηemitter can be in modern HBTs.
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Exercises

6.1 The current density in a forward biased n+ p diode is 104 A cm−2. In the
n-type quasi-neutral region this current can be considered to be carried entirely
by electrons. The length of this region is 1 µm and the donor doping density is
1019 cm−3.

Estimate the potential difference across this region.
If the voltage drop across the p-type quasi-neutral region is similar, are you

now convinced that the approximation of all the applied voltage being dropped
across the space-charge region is a good one?

6.2 Making use of your conclusion from the previous question, and invoking Shock-
ley’s Law of the Junction, use (6.24) to show that the quasi-Fermi levels for
electrons and holes are separated in the space-charge region by −qVa , where Va

is the potential applied to the n-side contact, and the p-side contact is grounded.
6.3 Derive (6.28). This important equation indicates that a gradient in quasi-Fermi

level must accompany a current.
6.4 If the quasi-Fermi levels are constant across the space-charge region, as Question

6.2 suggests, then how can this be consistent with (6.28)?
Substantiate your answer by computing d EFn/dx at x = xdp for an ideal diode

in forward bias, and then projecting this gradient across the depletion region to
obtain an estimate of (EFn(−xdn) − EFn(xdp)).

Confirm that this change is small compared to qVJ .
6.5 A Si np diode has a very long quasi-neutral region (QNR) on the n-side, but a

very short QNR on the p-side.
Is the current in this diode larger or smaller than that for the ideal diode

discussed in Section 6.6?
6.6 A Si n+ p diode has very long QNRs on both sides of the junction.

Design A of this diode uses p-type material that is of much higher crystalline
perfection than is used in Design B.

Which design would give the larger current at a given forward bias?
6.7 Consider the possibility of using an n+ p homojunction diode with a long p-region

as the temperature sensor in an electronic thermometer. The current I is to be
measured at a constant forward bias of 500 mV.
(a) Derive an expression for the fractional change in current �I/I resulting from

a temperature change of �T .
(b) Evaluate this expression at T = 300 K. Assume that the diode current is

dominated by recombination of electrons in the quasi-neutral p-region, and
for simplicity, consider the temperature dependence to be due solely to those
factors that have an exponential dependence on temperature.

6.8 Consider two diodes: A is an np GaAs homojunction diode, and B is an Np
Al0.3Ga0.7As/GaAs diode. NE = 5 × 1017 cm−3 and NB = 1019 cm−3 for both
diodes.

Which diode has the wider depletion region at −1.25 V forward bias?



P1: Trim: 174mm × 247mm Top: 0.498in Gutter: 0.664in

pulfrey_cup cuuk824/Pulfrey 978 0 521 51460 6 December 25, 2009 21:51

References 115

6.9 Consider an AlGaAs/GaAs N p+ heterojunction with a p-type doping density of
1019 cm−3. The Al mole fraction in the n-type material is 0.3, and WB = 50 nm.

Estimate the amount of electron quasi-Fermi-level splitting at a high value of
forward bias.

6.10 Evaluate the emitter injection efficiency at a high value of forward bias for the
heterojunction diodes of the two previous questions.
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7 Solar cells

A solar cell is a large-area np-diode, designed to convert sunlight to electricity via the
photovoltaic effect. Absorbed photons generate electron-hole pairs, which are separated
within the diode, leading to a photocurrent. This current is directed to an external circuit
where it develops a voltage across a load. Thus, there is conversion of optical power to
electrical power. The elements of this conversion process are sketched in Fig. 7.1. Note
that the top metal contact covers only a small fraction of the front surface so as to allow
exposure of the semiconductor surface to the incident light.

In this chapter we look at the Sun as an electrical resource, and then consider the
four features of the conversion process: absorption, generation, internal transport of
photo-generated charges, development of photovoltaic power in an external circuit. The
solar-cell example used in our treatment is a single-junction diode fashioned from a
homogeneous, single-crystal semiconductor. Some other possibilities, which may be
more practical, are then considered: multi-crystalline Si homojunction cells; thin-film
compound-semiconductor heterojunction cells; multi-junction, multi-semiconductor
tandem cells. We conclude with a brief discussion of the prospects for photovoltaics
being widely used for terrestrial electric-power generation.

7.1 The Sun as an electrical resource

The Sun’s radiant energy comes from the fusion reaction:

2H1 + 2H1 → 3He2 + 1n0 + E . (7.1)

The Earth ‘circles’ the Sun at a mean centre-centre distance of 149 × 106 km. We are
fortunate that this distance is so large because it allows the power density to decrease
from ≈6 × 104 kW m−2 at the Sun’s surface to ≈1.35 kW m−2 at the top of the Earth’s
atmosphere. After that, further reductions occur due to scattering of light by air
molecules, aerosols and particulate matter, and by absorption by ozone, water, oxygen,
and the ‘greenhouse gas’ carbon dioxide. The intensity of sunlight at a specific point
on Earth depends on the times of day and year, and on the orientation of the irradiated
surface. For standardization purposes, the solar spectrum at the Earth’s surface is taken
to be that when the Sun is at an angle of � = 48.19◦ from its zenith, and is incident
on a south-facing surface (in the Northern Hemisphere) that is mounted at 37◦ to the

116
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Figure 7.1 Schematic of the photovoltaic effect, illustrating how sunlight is converted to
electricity via absorption, electron-hole pair generation and separation. The thin layer between
the top contacts is an anti-reflection coating.
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Figure 7.2 Solar spectral irradiance, global, AM1.5 on 37◦ tilted surface, Northern Hemisphere.
Drawn from data in the ASTM G173-03e1 document [1], which can be purchased from ASTM.

horizontal.1 The secant of the former angle is a measure of the path-length of the Sun’s
rays through the atmosphere. The actual number is known as the Air Mass Number,
leading to the label AM1.5 for the angle cited. The solar spectral irradiance for these
standard conditions is shown in Fig. 7.2. This spectrum is known as AM1.5G, where ‘G’
stands for global, i.e., the diffuse radiation from scattering by clouds and from reflections
by the ground is added to the direct radiation from the Sun. Under these conditions,

1 These angles have been chosen as reasonable yearly averages for the 48 contiguous states of the USA.
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about 30% of the Sun’s energy is lost in passing through the atmosphere, leading to a
surface power density of 0.97 kW m−2. This number is rounded-up to 1 kW m−2 for the
purposes of testing solar cells and listing their performance in product literature. The
goal of solar cell design is to convert as much of this power as possible to electricity.

7.2 Absorption

Some of the light from the Sun that is incident on a solar cell is reflected, and some is
transmitted into the device. In this section we consider the latter, and we write the spatial
part of the electric-field component of sunlight’s transverse electromagnetic wave in the
form used in Chapter 2 for electron waves:

Ey(x) = E0eikx , (7.2)

where the wavenumber k = 2π/λsemi in a semiconductor is given by

k = ω

c/n∗ = ω(nr + ikr )

c
≡ 2π (nr + ikr )

λ
, (7.3)

where c and λ are the velocity and wavelength of light in free space, respectively, and
nr and kr are the real and imaginary parts, respectively, of n∗, the refractive index of the
semiconductor. Substituting for k in (7.2) gives

Ey(x) = E0ei2πnr x/λ e−2πkr x/λ . (7.4)

From this equation it is clear that the attenuation of the electromagnetic wave is related
to the presence of an imaginary part in the refractive index of the semiconductor.

We are interested in the optical power density (W m−2), and in electromagnetics this
is given by the Poynting vector

�S = �E × �H , (7.5)

where H is the magnetic field intensity, and the symbol S is consistent with that used for
the energy-density flux in formulating the Hydrodynamic Equations in Section 5.2.2.2

For a uniform plane wave, travelling in the x-direction, the magnitude of the power
density is

Sx = Ey Hz =
√

ε

µ

∣∣Ey

∣∣2 =
√

ε

µ
Ey(x)E∗

y (x) =
√

ε

µ
E2

0 e−αx , (7.6)

where ε and µ are the permittivity and permeability of the semiconductor, respectively,
and the absorption coefficient α is given by

α = 4πkr

λ
. (7.7)

The absorption coefficients of some semiconductors used in the manufacture of solar
cells are given in Fig. 7.3. Note how α for the indirect bandgap material Si increases

2 Recall that the units of energy-density flux (J m−2s−1) are those of power density (W m−2).
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Figure 7.3 The energy dependence of the absorption coefficient of some semiconductors
commonly used for solar cells. ‘c-Si’ is crystalline silicon, and ‘a-Si’ is amorphous silicon.
From Markvart and Castener [2], C© Elsevier 2005, Oxford, U.K., reproduced with permission.

less rapidly above its bandgap energy than does α for the other semiconductors shown,
which are direct bandgap materials.

7.3 Generation

The power density S at some free-space wavelength λ can be translated into the flux
of photons at that wavelength by dividing by the photon energy hc/λ. Let us call this
photon flux �(λ); it has units of photons/m2/s. From (5.8), the balance equation for
monochromatic photons within the semiconductor can be written as

∂ P(λ)

∂t
+ ∇ · �(λ) = Rrad(λ) − A(λ) , (7.8)

where P is the volumetric photon density, Rrad is the generation rate of photons within
the semiconductor due to the radiative recombination of previously generated electron-
hole pairs, and A is the rate of loss of photons due to absorption of photons within the
volume. For a solar cell, we would like all of the absorbed photons to create separable
electron-hole pairs, i.e., A(λ) = Gop(λ), the generation rate discussed in Section 3.1.2.
In practice, unwanted absorption mechanisms that could arise are: G f c, excitation of
already-free carriers (see Fig. 7.4a); and Gex , generation of electron-hole pairs that
remain bound together by Coulombic attraction (see Fig. 7.4b). The bound electron-hole
pair is called an exciton. It is unwanted in a solar cell because it moves through the
device as a neutral entity, so it does not contribute to the current. Thus

A = Gop + G f c + Gex , (7.9)

from which an internal quantum efficiency can be defined:

Gop = ηintA. (7.10)
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(a) (b)

EE

CE

Figure 7.4 Unwanted results of photon absorption. (a) Free-carrier absorption. (b) Exciton
formation. Coulombic attraction to the hole prevents the excited electron from gaining the
conduction band. EE can be viewed as the first excited state of a one-electron system.
(EC − EE ) is the exciton binding energy; if it is much less than kB TL , then the exciton will be
short-lived.

In steady-state, for a beam of sunlight travelling in 1-D, an expression for Gop can be
obtained from (7.10), (7.8), and (7.6):

Gop(λ) = ηint(λ)α(λ)�0(λ)e−αx , (7.11)

where �0 = √
ε/µE2

0 /hc/λ is the photon flux in m−2s−1 as it enters the solar cell.
Summing the monochromatic generation rates in silicon for the AM1.5G spectrum,

Fig. 7.5 is obtained. Note the high generation rate near the surface of the cell. The roll-off
is exponential for all wavelengths, but is particularly pronounced at shorter wavelengths
where α is high. This has a big impact on the generation profile because the peak photon
density occurs at the relatively short wavelength of about 500 nm (see Fig. 7.2).

7.4 Photocurrent

The current resulting from the photon absorption is called a photocurrent; to create
it, the photo-generated electron-hole pairs must be separated, and made to flow in
opposite directions. This is achieved by having a built-in field within the structure, and
is most obviously implemented by making a pn diode. The major questions that need
to be answered for the design of this diode are: how deep into the device should the
metallurgical junction be placed; should the top part of the diode be p- or n-type; what
should the doping densities be for the two regions?

The answers to these questions can be obtained by scrutinizing Fig. 7.5. Because the
generation rate decays exponentially on moving into the cell, then the junction should be
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Figure 7.5 Generation-rate profile in Si for AM1.5G sunlight. Evaluated from (7.11) using
spectral irradiance data from Fig. 7.2, and absorption coefficient data from Ref. [3].

placed very close to the front surface. Thus, the top part of the semiconductor, which is
called the emitter, is thin. Recall that the current must take a lateral path to the metallic
contacts on the front surface (see Fig. 7.1), so the emitter must be heavily doped to
avoid unwanted, parasitic series resistance. The other, lower part of the diode is called
the base; it needs to be relatively thick to collect the long-wavelength photons, and to
provide mechanical strength for the solar cell. Minority carriers generated in this region
may have to travel relatively long distances to the junction, so we should choose the
doping type of the base to give us the more mobile minority carrier. For major solar cell
materials such as Si and GaAs, this means that the base should be p-type (see Fig. 5.3).
Hence, a solar cell is a shallow-junction, n+ p diode, where the superscript ‘+’ means
‘heavily doped’.

The energy band diagram for the solar cell is shown in Fig. 7.6. Because the generation
rate decreases with distance into the cell, both electrons and holes in both of the quasi-
neutral regions diffuse to the right. In the emitter, separation of the carriers occurs at the
junction, where the electrons are reflected by the built-in potential barrier. To achieve the
same effect for carriers generated in the base, a back-surface field is created by heavily
doping the end of the p-type region. In fact, there is also a field at the front surface of the
cell, often due to the donor density gradient, which occurs naturally during the diffusion
doping process. In the remaining region of the cell, the space-charge region, carriers
generated therein are automically separated by the built-in junction field.

7.4.1 Surface recombination velocity

To characterize the effect of the surface fields on minority carriers, the concept of a
surface recombination velocity is used [4]. To paraphrase Shockley, the creator of this
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x = 0 Bxj x j + W

EC

EV

Figure 7.6 Energy-band diagram for a solar cell showing the separation of electron-hole pairs that
are generated in each of the three major regions of the device: the emitter, the space-charge
region, and the base. Minority-carrier-reflecting fields at the front and back surfaces, due to
n+n− and pp+−junctions, respectively, are also shown.

concept: the rate of recombination of electrons at the surface is the same as if a flux of
electrons of density (n − n0) were drifting with an average velocity S into the surface
and being removed. Thus, in the quasi-neutral base at x = B (see Fig. 7.6), the electron
current is diffusive, and we have

−De
d

dx
(n − n0) = −De

dn

dx
≡ S(n − n0) , (7.12)

where S is the surface recombination velocity: it is always positive and has units of m/s.
Two extreme values of S neatly characterize ohmic and blocking contacts at some

boundary x = B:

Ohmic: S = ∞, n(B) = n0, but Je is finite,
Blocking: S = 0, n(B) > n0, but Je is zero.

In solar cells we would like to have blocking contacts for the minority carriers so that
electrons in the base and holes in the emitter are reflected towards the metallurgical
junction.

7.4.2 Emitter photocurrent

To derive an expression for the component of the photocurrent due to generation in the
emitter quasi-neutral region, we focus on the diffusion of minority carrier holes. Further,
we assume that there are no large gradients in the kinetic energy per carrier. Thus, from
our master set of equations (5.24), we have, at steady-state and for the region 0 < x < x j
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identified on Fig. 7.6

0 = − 1

q

d J E
h

dx
+ Gop − p − p0

τh

J E
h (x) = −kB TLµh

dp

dx
≡ −q Dh

dp

dx
. (7.13)

These equations are to be solved with the boundary conditions

Dh
dp

dx

∣∣∣∣
x=0

= SF (p(0) − p0)

p(x j ) = p0 , (7.14)

whereSF is the front-surface recombination velocity, and the second boundary condition
implies that all excess minority-carrier holes reaching the edge of the space-charge region
are swept across the junction by the built-in field. Using (7.11) for Gop and assuming an
internal quantum efficiency of 100%, the solution for monochromatic light of wavelength
λ is

J E
h (λ, x j ) = q�0αLh

α2L2
h − 1

[
− αLhe−αx j

+ Hh + αLh − e−αx j (Hh cosh Qh + sinh Qh)

Hh sinh Qh + cosh Qh

]
, (7.15)

where Qh = x j/Lh, Hh = SF Lh/Dh , with Lh being the hole, minority carrier diffusion
length.

7.4.3 Base photocurrent

The photocurrent arising from the minority carrier electrons generated in the base can
be derived in a similar manner to that described for the hole current in the emitter. The
answer is

J B
e (λ, x j + W ) = q�0αLee−α(x j +W )

α2L2
e − 1

×
[
αLe − He(cosh Qe − e−αB ′

) + sinh Qe + αLee−αB ′

He sinh Qe + cosh Qe

]
, (7.16)

where B ′ = B − (x j + W ), Qe = B ′/Le, He = SB Le/De.

7.4.4 Space-charge-layer photocurrent

In the space-charge layer we can reasonably assume that all carriers generated therein
are separated by the built-in field. Thus, in deriving the current due to photogeneration
in this region we can consider either electrons or holes. The derivation is much simpler
than for the photocurrents in the quasi-neutral regions because we can assume that the
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carriers are swept out of the space-charge region so quickly that there is no opportunity
for recombination to occur. Thus, using electrons for our derivation, the relevant equation
from our master set reduces to

0 = 1

q

d J D
e

dx
+ Gop = 0 , (7.17)

where the superscript ‘D’ indicates that we’ll use the Depletion Approximation to esti-
mate the width W of the space-charge region. Thus, integrating over x j < x < (x j + W )
and, once again, assuming perfect internal quantum efficiency, the result is

J D
e (λ, x j ) = q�0e−αx j

[
1 − e−αW

]
. (7.18)

7.4.5 Total photocurrent

In the above derivations, two photocurrents are specified at x = x j , and the other (J B
e )

is specified at x = (x j + W ). However, we can reasonably assume that J B
e has the same

value at x = x j , because we don’t expect any recombination to occur as the electrons
are swept across the space-charge layer. Thus, we can add-up our three components of
current to get the total photocurrent density JPh at any particular wavelength:

JPh(λ) = J E
h (λ, x j ) + J D

e (λ, x j ) + J B
e (λ, x j + W ) . (7.19)

By summing over the wavelength range of terrestrial sunlight, we get the total
photocurrent

JPh =
∑

AM1.5G

JPh(λ) . (7.20)

An example of the three regional components of the spectral photocurrent for a Si
solar cell is shown in Fig. 7.7. The specifications for the cell are listed in the caption to
the figure. The total photocurrent density in this example is 39 mA cm−2. It may surprise
you to learn that the largest contribution comes from the region furthest from the front
surface.

This calculated value of JPh is very close to the present (2009) world record of
42.2 mA cm−2 for a Si solar cell [6]. We assumed the favourable conditions of no
reflection of sunlight from the front surface of the cell, and 100% internal quantum
efficiency for the conversion of light entering the cell. The fact that the experimental
value of JPh is even higher than our calculated value indicates that the practical cell has
outstanding minority-carrier- and photon-collection-properties. The latter is achieved
by having a double-layer anti-reflection coating and by etching the front surface to give
it an ‘egg carton’-like topography (see Fig. 7.8). Sunlight hitting one sloping side is
partially transmitted into the cell and partially reflected to the opposite sloping side,
offering the light another opportunity for transmission into the cell. On the front and
back semiconductor surfaces of the practical cell a thin insulating layer of silicon dioxide
has been grown to provide a blocking contact, and to passivate the surfaces to reduce
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Figure 7.7 Components of the spectral photocurrent density under AM1.5G illumination for a Si
solar cell with the following specifications: x j = 200 nm, B = 450 µm, ND = 5 × 1019 cm−3,
Dh = 1.29 cm2 s−1, Lh = 7.2 µm; NA = 1.5 × 1016 cm−3, De = 27 cm2 s−1, Le = 164 µm,
SF = 1 m s−1, SB = ∞. Courtesy of Garry Tarr, ex-UBC.
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Figure 7.8 Schematic of the solar cell structure of the present holder of the world-record
efficiency for a Si cell. From Jhao et al. [5], C© 1997 IEEE, reproduced with permission.

recombination3. The minority carriers are collected through small ‘windows’ in the
oxide via heavily doped regions, which form the surface-field regions discussed above.
It is probable that the minority-carrier lifetimes in the practical cell are longer than the

3 At the surface of a crystalline semiconductor there are bonds that are incomplete because of the interruption
to the periodicity of the structure. This creates localized energy levels within the bandgap that serve as traps
to facilitate electron-hole recombination. The completion of the bonds, often by hydrogen incorporated in the
oxide, reduces the number of recombination sites, and the surface is said to be passivated.
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values we have used in Fig. 7.7, giving further reason for the superior performance of
the real cell.

7.5 Photovoltage

The electrons and holes constituting the photocurrent flow in the direction of a reverse
bias current. When this current is led to an external circuit containing some load, RL for
example, a voltage is developed across the load such as to forward bias the diode, thereby
generating a current that opposes JPh. Thus, the price paid for generating a voltage is
the loss of some net current.

The question now arises: can the forward-bias current be estimated using a diode
equation of the general form developed for the ideal ‘dark’ diode in Section 6.6? In
other words, can the current due to an external bias applied to an unilluminated diode
be simply added to the photocurrent to give the total current of a self-biased illuminated
diode? The answer is ‘yes’, providing the illumination is not so intense as to (a) cause
the quasi-Fermi levels in the space-charge region to deviate significantly from constant
values, and (b) cause the minority carrier lifetime to change from its value ‘in the
dark’. It turns out that these provisos are met for unconcentrated sunlight at the Earth’s
surface [7]. So the diode dark current can be computed using the boundary conditions
from (6.29) at the edges of the space-charge region, and a boundary condition like (7.12)
at the contact-ends of the quasi-neutral regions. For example, for electrons injected into
the base, we have

n(x j + W ) = n0peVL j /Vth

−De
dn

dx

∣∣∣∣
x=B

= SB(n(B) − n0) , (7.21)

where SB is the back-surface recombination velocity, i.e., at x = B, and VL j is that part
of the load voltage that is dropped across the junction: in the absence of series resistance
we can take it to be the load voltage VL . The result for the dark current due to electrons
emitted into the base is of the general form

Je,D = J0,e[eVL /Vth − 1] , (7.22)

where the subscript D identifies the dark current, and the saturation current density
has been written with a subscript that is different from the ideal-diode case in order to
recognize that different boundary conditions are appropriate. A similar expression can
be derived for the holes injected across the forward-biased junction into the emitter. If
we ignore any current change in the space-charge region due to recombination in that
region, the total dark current is the sum of the two injected currents, and is of the form

JD = J0[eVL /Vth − 1] . (7.23)

Applying superposition, the load current JL is simply

JL = JPh − JD , (7.24)
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Figure 7.9 Solar cell I-V characteristic, illustrating the superposition of the photocurrent and the
usual, exponential diode current. The polarity of the load current has been chosen to emphasize
that the solar cell generates power (I V < 0). The load absorbs power, of course, (I V > 0).

and the output characteristic of the solar cell is just a displaced exponential, as illustrated
in Fig. 7.9.

When the dark current exactly negates the photocurrent, we have effectively open-
circuit conditions, and the load voltage is known as the open-circuit voltage Voc. Thus,

Voc = Vth ln
JPh + J0

J0
. (7.25)

To examine the limits of Voc, let us write

J0 = CE pn0 + CBn p0 =
(

CE

ND
+ CB

NA

)
n2

i , (7.26)

where CE and CB include the minority-carrier properties of diffusion length and sur-
face recombination velocity for the emitter and base, respectively, and ND and NA

are the appropriate doping densities. The intrinsic carrier concentration ni depends
exponentially on the bandgap, so we can rewrite J0 as

J0 = Ce−Eg/kB T , (7.27)

where the constant C includes the bracketed terms in (7.26) and the effective densities
of states from (4.19). Thus, the open-circuit voltage becomes

Voc ≈ Eg

q
− Vth ln

(
C

JPh

)
, (7.28)

from which it is clear that the bandgap imposes a limit on Voc, and that this limit is more
closely realized for larger photocurrent densities.
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Figure 7.10 Power-voltage characteristic for a 10-cm diameter Si cell with JPh = 40 mA cm−2 and
Voc = 700 mV. The current and voltage at the point of maximum power generation are commonly
called Imp and Vmp , respectively. The presence of parasitic resistance in the cell affects the
maximum power point, as illustrated here. Rs is series resistance and Rsh is shunt resistance.

7.5.1 Photovoltaic power

From Fig. 7.9, we see that for 0 < VL < Voc, the solar cell’s I-V curve is in the 4th

quadrant, where the current is negative and the voltage is positive. Thus, the power
is negative, indicating generation, rather than the more usual dissipation. The power
characteristic is shown in Fig. 7.10. The power at the point of maximum power generation
is Pmp; it is expressed as a density in W/m2, and is given by

Pmp = JmpVmp

≡ F F JscVoc , (7.29)

where Jmp and Vmp are the current density and voltage at the maximum power point
and Jsc is the current at short circuit. The presence of parasitic resistances in the cell
can cause |Jsc| to be less than |JPh|, as Fig. 7.11 illustrates. Series resistance can come
from the vertical path taken by the current through the thick base region, and from the
horizontal path shown on Fig. 7.1 of the current through the thin emitter. The solar cell,
being an inherently low-voltage device, is particularly sensitive to series resistance. Shunt
resistance arises from internal imperfections at the junction, and from any conductivity
along the vertical edges of the device. The former is taken to be more important in the
equivalent-circuit representation of the solar cell in Fig. 7.12, as is evident from the
placement of Rsh .

Equation (7.29) defines the fill-factor F F . This factor is somewhat less than unity
because the exponential form of the solar cell’s I-V characteristic is only an approximation
to the perfect characteristic that would have JL = Jsc = JPh for all VL < Voc. In other
words, FF recognizes that a real cell makes the transition from JL = Jsc to JL = 0 in a
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Figure 7.11 I-V characteristics when parasitic resistances are present. Same cell parameters as in
Fig. 7.10. See the caption to Fig. 7.9 regarding the choice of sign for the current.
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Figure 7.12 Solar cell equivalent circuit.

less abrupt manner. This ‘softness’ of the diode characteristic becomes less important
as the bounding area JPhVoc is increased. Unfortunately, if one seeks to improve Voc by
choosing a material of high bandgap, then JPh will be reduced because of the increased
transparency of the material to sunlight. The result of these competing requirements
for high Voc and high JPh is that the photovoltaic conversion efficiency ηpv peaks at
some value of Eg . The results of detailed calculations are shown in Fig. 7.13, and the
efficiency is given by

ηpv = F F JscVoc

SAM1.5G
. (7.30)

The peak in the maximum-efficiency curve occurs around a bandgap of Eg ≈ 1.4 eV,
but the peak is quite broad, so silicon is not far from being the theoretically optimum
material for a solar cell. This fact, coupled with the mature state of silicon-device
processing has led to near-maximum efficiency Si solar cells being realized in practice
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Table 7.1 World-record values (as of 2008) for photovoltaic conversion efficiencies, as
measured in prototype solar cells under unconcentrated AM1.5G illumination. Si data
from J. Zhao et al. [6]; CIGS data from I. Repins et al. [9]; tandem cell data from R.R.
King et al. [10].

Eg Jsc Voc F F ηpv

Semiconductor (eV) (mA cm−2) (V) %

Si 1.12 42.2 0.706 0.828 24.7
CIGS 1.04–1.7 35.4 0.690 0.812 19.9
GaInP/GaInAs/Ge 1.8/1.3/0.7 16.0 2.392 0.819 31.3

35

30

25 AM1.5

Black-body limit (AMO)

20

E
ffi

ci
en

cy
 (

%
)

15

10

5
0.5 1.0 1.5 2.0 2.5

Semiconductor band gap (eV)

Ge

T = 300 K

Cds

AMO

Si
Cu2S

GaAs α–Si:H
α–Si:H:F

Figure 7.13 Estimates of maximum efficiency vs. bandgap under various illumination conditions.
α-Si refers to amorphous silicon, from which thin-film solar cells can be made. Presently (2009),
CIGS is a more promising thin-film material; its bandgap is in the range 1.4–1.7 eV (see
Section 7.6.1). From Green [8], C© Martin A. Green, reproduced with permission.

(see Table 7.1). In addition to its favourable theoretical properties and highly developed
processing technology, silicon has the added advantage for a large-area device of being
an abundant material.4 Despite these attributes, solar-cell systems utilizing single-crystal
solar cells are still quite expensive. The cost is largely due to the expense of purification
and of growth of large-area single crystals. Many commercial silicon solar cells presently
use multicrystalline material, which comprises crystallites of size ≈0.1−10 cm in wafers
that are sawn from large blocks of cast silicon, rather than being cut from Czochralski-
pulled-ingots. The efficiency of experimental multicrystalline Si solar cells has reached
≈20%.

4 Silicon is the second most abundant material in the earth’s crust; it ranks below oxygen.
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Figure 7.14 Cross-section of a CIGS solar cell. From Noufi and Zweibel [11], C© 2006 IEEE,

reproduced with permission.

7.6 Non-silicon solar cells

Two approaches to possibly economically viable solar cells involve thin-film cells or
tandem-junction cells.

7.6.1 Thin-film solar cells

For many years the dream of thin-film solar cells that could be deposited in situ onto
large-area surfaces has been pursued. Presently, an interesting contender is copper indium
gallium diselenide, CIGS. Depending on the ratio of In to Ga in the material, the bandgap
lies somewhere between 1.04 eV (no gallium) to 1.7 eV (no indium), i.e., it spans the
optimum range shown in Fig. 7.13. Substitutional doping in this ternary compound
is not easy to achieve, so excess carriers are created by deliberately encouraging the
incorporation of vacancies in the deposited film. For example, if the growth conditions
are adjusted so that there is a deficiency of Cu in the CIGS layer, then the Se atoms
surrounding the Cu vacancies will be lacking in electrons. Thus, Se accepts electrons
from elsewhere, and the material becomes p-type.

The reaction is described by

V 0
Cu = V −

Cu + h+ : Ea = 0.03 eV , (7.31)

where VCu denotes a copper vacancy, and the activation energy Ea is small. Unfortunately,
formation of an np-junction is not easy because the different types of defect that would
be needed tend to compensate each other. Thus, solar cells made from CIGS have a
p-type base and use another semiconductor for the n-type emitter (see Fig. 7.14). The
diode is, therefore, a heterojunction. The current in this type of junction is discussed
in Chapter 9. In CIGS solar cells the n-type semiconductor has a large bandgap and,
therefore, does not absorb much sunlight. Instead, it acts as a ‘window’ to allow the solar
energy to penetrate directly into the absorbing CIGS film.

As Table 7.1 indicates, impressive efficiencies have already been obtained in labo-
ratory specimens. There is presently much speculation about whether this performance
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Figure 7.15 Tandem-junction solar cell concept. In this example, three solar cells of different
materials are connected in series. The bandgaps are Eg1 > Eg2 > Eg3.

can be transferred to large-area cells and make photovoltaic power cost-competitive with
conventional power.

7.6.2 Tandem-junction cells

In a tandem-junction solar cell, two or more solar cells of different materials are stacked
together and connected serially (see Fig. 7.15). The bandgap of the materials decreases
from top to bottom, so that photons that would normally pass through a high-bandgap
cell and be lost are captured in the lower cells. In this way, more of the solar spectrum
is absorbed, and it is absorbed more efficiently. For example, a 2 eV photon will be
absorbed in both a semiconductor with Eg = 1 eV and a semiconductor with Eg = 2 eV.
However, in the former case, the extra 1 eV of photon energy will be turned into heat
because phonons will be emitted as the excited electron scatters and loses energy (much
like the situation shown in Fig. 3.9b for Auger recombination). The rise in temperature
will increase the dark current, thereby reducing Voc and, consequently, ηpv .
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EC

EVEg2
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Figure 7.16 Two cells in tandem. Solid lines indicate the paths of the photogenerated carriers. In
this example, more photogeneration occurs in the first cell, which has a bandgap Eg1. A dark
current (dashed lines) is generated in this cell to reduce the net current to that of the photocurrent
of the second cell. Recombination occurs at the sites marked with crosses.

Because of the series electrical connection of tandem cells, Voc is additive, but JPh

is limited to the value for that of the cell within the stack that generates the least
photocurrent. Clever design would arrange for the thicknesses of the various parts of
each cell to be such that JPh is the same in each cell. If this is not the case, then the cell
producing the higher photocurrent becomes forward biased, so that the net current in
each cell is forced to be the same (see Fig. 7.16).5

The cost of producing a stack of matched, single-crystal solar cells is likely to be
relatively high, so one possible practical implementation would be to use only small-area
cells, and then to collect the sunlight from a wider area using a concentrating lens. Such
an arrangement would boost JPh, which, in turn, could lead to associated improvements
in Voc and F F . For example, the tandem cell listed in Table 7.1, when operated under
a solar intensity equivalent to 240 Suns, yet kept cool at 25◦C, shows improvements in
Voc and F F to 2.911 V and 0.875, respectively. The efficiency is increased to 40.7%.

7.7 Prospects for terrestrial photovoltaic power generation

The world’s consumption of electricity is expected to double over the period 2004–2030,
reaching an annual consumption close to 30,000 TWh. Where is all this electricity going
to come from?

In 2006, the world’s generating mix was as shown in Table 7.2. The fossil fuels (coal,
oil, and gas) form the major generating source. These fuels do not naturally regenerate
on a time-scale that would permit them to be called renewable sources of energy. Their
resources are finite and diminishing. It is debatable whether oil and gas should even be
merely burned to raise steam to generate electricity, rather than be used for some other
purposes for which they are more uniquely suited, e.g., transportation fuel. Coal-fired

5 This auto self-biasing of cells also occurs in series-connected strings of ordinary solar cells in a module
if a shadow falls across one cell. The non-shaded cells develop a forward bias to reduce the net current.
This undesirable feature can be protected against at the extra cost of incorporating by-pass diodes in the
photovoltaic module.
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Table 7.2 The installed capacity of various electricity-generating
sources, expressed as a percentage of the world total. From the
International Energy Agency [12].

Coal Oil Gas Nuclear Hydro Renewables

40 7 20 16 15 2

electricity generation is growing enormously because of the abundant deposits in the
rapidly developing nations of China and India. Coal plants are relatively cheap, due in part
to the undesirable fact that their waste product (which contains a lot of CO2) is usually
dumped into the atmosphere without treatment. Regulations governing the disposal
of waste products from nuclear generators are, thankfully, more stringent. However,
nuclear-power generation is not without some well-known hazards. Hydro power is the
most benign of the present generating methods, but many parts of the planet are not
blessed with the rainfall and the terrain to facilitate the proliferation of this power source.

In view of the above shortcomings of conventional power sources, photovoltaic power
generation would seem to be an attractive proposition. However, in 2006, it was lumped-
in with ‘renewables other than hydro’, such as biomass, wind, geothermal, wave and
tidal, which provided only 2% of the world’s electricity. Obstacles to the widespread
utilization of photovoltaics include:

� vested commercial interests in existing generating methods;
� large real-estate requirements. The daily yield is unlikely to exceed 2 kWh m−2 (full

sun for 10 hours per day at 20% conversion efficiency).
� high cost of manufacturing solar cells of reasonable efficiency (≈20%). Silicon is

the most developed solar-cell semiconductor, and a major component of this cell’s
cost derives from the need to produce material of sufficient quality to obtain long
minority-carrier lifetimes.

� the diurnal nature of terrestrial insolation. This means that solar power plants must
be backed-up with some storage capability (probably batteries), or be operated in
conjunction with a more consistent and controllable source of power.

One solar option that may be cost-effective to implement is building-integrated
photovoltaics. In this scheme, houses and commercial buildings are designed with
roofs and walls that have solar cells incorporated into their structures, rather than being
superficial additions. Each building would then become a distributed generating site,
and would be under the control of the local electricity authority. The solar-generated
electricity would not have to be used immediately by the owner of the host building, nor
would it have to be stored in bulky batteries in the basement. The photovoltaic power
would be transmitted around the grid, and used wherever it was needed. The solar power
wouldn’t necessarily be expected to meet the demand all of the time. Instead, it would
add to power from a baseline source, such as hydro or nuclear.

To add significant amounts of photovoltaic power to the generation mix requires a
big commitment. It is encouraging that the governments of at least two countries in
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the world, Germany and Japan, have begun to provide the incentives for citizens and
industries to invest in photovoltaic power generation. Maybe you can start to lobby your
government? Or perhaps you are too busy utilizing the material in this chapter to design
a cheaper and more efficient solar cell?

Exercises

7.1 A solar cell, which operates in the dark like an ideal diode, is irradiated such that
the optical generation rate Gop is uniform throughout the volume of the diode.
Show that the photocurrent density is given by

JPh = qGop(W + Le + Lh) , (7.32)

where W is the depletion-layer width, and the L’s are minority carrier diffusion
lengths.

7.2 The E-k relationships for the conduction bands of two semiconductor materials, A
and B, each with spherical constant-energy surfaces, can be expressed as

E A − 0.7 = αk2 and EB − 1.4 = 2α(k − k ′)2,

respectively, where α is a constant, k ′ > 0, and the energies are in units of eV. Both
materials have the same valence-band structure, with the top of the valence band
at E = 0 and k = 0.

Which material would make the better solar cell?
7.3 Fig. 7.7 shows the spectral photocurrent density for a Si np-junction solar cell with

a base doping density of NA = 1.5 × 1016 cm−3. The particular values used for the
basewidth and the electron back surface recombination velocity are WB = 450 µm
and SB = ∞, respectively.

Would there be any significant effect on the photocurrent if the base properties
were:
(a) WB = 450 µm and SB = 0 ?
(b) WB = 50 µm and SB = ∞ ?

7.4 Consider a silicon solar cell made from a wafer of diameter 10 cm. The top-
contact metal covers 10% of the front-surface area. Under 1 Sun illumination, the
photocurrent density is 40 mA cm−2, and the open-circuit voltage is 0.7 V.
(a) Compute I0, the diode saturation current.
(b) Plot the I-V characteristic under 1 Sun illumination.
(c) On a separate plot show the power-voltage characteristic.
(d) Evaluate the fill-factor FF and the conversion efficiency ηpv .

7.5 The emitter of the cell in the previous question is 200 nm thick and has a doping
density of 5 × 1019 cm−3. The top-contact grid pattern is such that the series
resistance of the cell can be represented by a slice of the emitter material that is
14.66 µm long and 1 cm wide.
(a) Evaluate the series resistance Rs of the cell.
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(b) Plot the new I-V characteristic for the cell on the same graph as for the cell
with Rs = 0 from the previous question.

(c) Plot the new P-V characteristic for the cell on the same graph as for the cell
with Rs = 0.

(d) Evaluate the new ηpv .
7.6 A photovoltaic module is made by connecting in series two of the cells from the

previous question. Ignore series resistance.
A shadow falls across one of the cells so that 50% of its top surface is obscured.
Plot the P-V characteristic of the module, and evaluate ηpv .

7.7 The situation described in the previous question leads to a loss of power at the
load, but it also leads to the serious possibility of the shadowed cell burning
out.

Explain why the temperature is likely to rise in the shadowed solar cell.
7.8 An ingenious approach to possibly reducing the cost of photovoltaic power gener-

ation using crystalline solar cells results in a Sliver C© cell [13].
Imagine a conventional Si solar cell of diameter 10 cm and thickness 450 µm,

with lines scribed on the front surface, 100 µm apart, to define 1000 strips. Dicing
the cell into strips results in some kerf loss, so the final strips are 60 µm wide.
These strips are then laid flat so that they can be exposed to solar radiation over
the cross-section of the cell, e.g., at 90◦ to the direction shown in Fig. 7.1.

Evaluate the improvement in exposed front-surface area that this approach brings
about.
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8 Light-emitting diodes

The light-emitting diode (LED) is a pn-junction diode in which radiative recombination is
encouraged to occur under forward-bias operating conditions. Thus, there is conversion
of electrical energy to optical energy. In essence, the LED is the complement of the
solar cell. In the example shown in Fig. 8.1, the internally generated photons escape
through the top surface, which cannot, therefore, be covered entirely by the top metallic
contact.

In the first part of this chapter, we develop an understanding of the LED by considering
a number of efficiencies that relate to the various stages of the conversion of electrical
energy to optical energy:

� voltage efficiency. This relates the applied voltage to the bandgap of the semiconductor.
The latter would be chosen to obtain the desired colour of emitted light;

� current efficiency. This relates the current due to recombination in the desired part of
the device to the current due to recombination elsewhere. Consideration of this effi-
ciency leads to the heterostructural design that is a feature of modern, high-brightness
LEDs;

� radiative efficiency. This relates to the relative amounts of radiative recombination and
unwanted, non-radiative radiation. It leads to material selection (direct bandgap), and
specifications on doping and purity;

� extraction efficiency. This relates to getting the photons out of the semiconductor
in which they are generated. Consideration of this efficiency largely determines the
substrate, contacts, and, in some cases, the shape of the device.

� wall-plug efficiency. This describes the overall efficency of the electrical-to-optical
conversion process.

We then go on to discuss the features of white-light LEDs, and conclude with a short
appraisal of the prospects of LEDs making an impact in the area of general lighting.

8.1 Voltage efficiency

At equilibrium, we know that electrons tend to reside in states near the bottom of the
conduction band, and that holes preferentially reside near the top of the valence band.
These dispositions will be altered somewhat by the application of a forward bias to a
pn-junction, but we can expect that the energy of any photons resulting from radiative

138
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Table 8.1 Bandgap and emitted-light properties for two
material systems used for high-brightness LEDs. The bandgap
is increased by increasing the mole fraction x of Ga in the
GaInN system and of Al in the AlGaInP system.

Semiconductor Eg λ Colour
(eV) (nm)

Gax In1−x N 2.64 470 blue
2.36 525 green

2.10 590 yellow
(Alx Ga1−x )yIn1−yP 2.03 610 orange

1.98 625 red

p

p

n+

+

− 

+

 

Figure 8.1 The basic LED, illustrating how injection of electrons and holes into the space-charge
region leads to recombination and the generation of light.

recombination will be close to that of the bandgap Eg (see Exercise 8.6). We define a
voltage efficiency as

ηV ≡ �ω

qVa
≈ Eg

qVa
, (8.1)

where Va is the magnitude of the applied forward bias, and ω is the radian frequency
of the generated light. Some properties of the two material systems from which today’s
high-brightness LEDs are made are listed in Table 8.1.

Equation (8.1) defines the applied voltage required to get a voltage efficiency of unity
when using the semiconductor that has been chosen for a particular frequency of light
output. Evidently, employment of Va < �ω/q would lead to higher voltage efficiences,
but, because of the exponential dependence of the carrier concentrations on potential
(see (6.27)), the use of such low biases would not prove helpful in obtaining a high
overall efficiency.
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Figure 8.2 Energy-band diagram of a forward-biased P+ pN+ heterojunction diode. Radiative
recombination is encouraged in the low-bandgap material.

8.2 Current efficiency

The rate of radiative recombination is proportional to the local p(x)n(x)-product (see
Section 3.1.2). In a forward-biased diode, the minority-carrier concentrations will be
elevated above their equilibrium values over distances that extend from the space-charge
layer by several minority-carrier diffusion lengths (see Fig. 6.8). Thus, photon generation
will occur over a length of the order of microns.

To obtain more intense photon generation, the minority carriers must be concen-
trated into a smaller region. This is achieved in modern high-brightness LEDs by using
dissimilar materials for the p- and n-regions of the diode. An example of such a het-
erostructure diode is shown in Fig. 8.2. This structure uses a low bandgap material
sandwiched between two higher bandgap materials to form a potential well in which the
minority carriers are trapped, thereby increasing their concentrations and, consequently,
the intensity of the generated light. The region of carrier confinement is called the active
layer. We will discuss this heterojunction energy-band diagram in more detail in the
next subsection, after we have defined the current efficiency.

Consider the current due to electrons that are injected from the N-region and recombine
in the active region with holes that are injected from the P-region. From our master set
of equations (5.24) the electron current density, in steady-state and with no non-thermal
generation of electron-hole pairs, can be found from

1

q

d Je

dx
− �n

τe
= 0 . (8.2)
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Integrating over the active region, which we take to be bounded by x = 0 and x = H ,

∫ H

0

�n

τe
dx =

∫ H

0

1

q

d Je

dx
dx . (8.3)

Assume that the minority carrier lifetime is uniform over the active region, and introduce
the radiative recombination lifetime

∫ H

0

�n

τrad
dx = τe

τrad

1

q

∫ H

0

d Je

dx
dx = τe

τrad

1

q
[Je(H ) − Je(0)] . (8.4)

Ideally, we would like Je(0) → 0 as this would mean that there was no electron recom-
bination in the P-region. Thus, the current efficiency of an LED is defined as

ηC = [Je(H ) − Je(0)]

JD
, (8.5)

where JD is the total current density of the diode. To reduce Je(0) it is necessary to
prevent electrons from escaping into the P-region. This is best accomplished by making
a large energy barrier for electrons at the interface between the active region and the
P-region. Similarly, it is desirable to have a barrier at the active/N-region junction to
prevent the escape of holes from the active region. These attributes can be realized by
implementing heterojunctions of the Type-I variety discussed in Section 6.7.1.

LEDs are usually p-on-n diodes, unlike solar cells, which are usually n-on-p diodes.
In an LED it is not necessary to have the junction region extremely close to the surface
because the photons are all of energy very close to the bandgap, and so the relevant
absorption coefficient is low. For mechanical reasons the bottom layer of the LED is
likely to be thick, and n-type material is preferred for this region in order to min-
imize series resistance. ‘Vertical’ resistance dominates in this device because there
is little lateral current, and the LED has a much smaller cross-sectional area than a
typical solar cell. Also, recall that the LED operates in forward bias, so the current
is large and series resistance is to be avoided in order to obtain the desired junction
voltage.

8.2.1 Heterojunction diodes

A prerequisite for a practical semiconductor/semiconductor heterojunction is that there
should be a good match between the lattice constants of the two materials. Otherwise,
there will be defects at the interface, causing recombination of electrons and holes via
intra-bandgap states. Such recombination is particularly undesirable in an LED because
it is likely to be non-radiative (see Section 3.2). For illustrative purposes we’ll focus
for the moment on the Alx Ga1−x As system, which, as can be seen from Fig. 8.3, gives
good lattice matching to GaAs over almost the entire compositional ratio. In fact, for
LEDs we’re only interested in mole fractions up to about x = 0.4, because after that the
smallest bandgap in AlGaAs becomes indirect. For drawing the energy-band diagram, the
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Figure 8.3 Bandgap dependence on composition of some binary, ternary and quaternary
compound semiconductors. From Schwierz [1], C© 2000 IEEE, reproduced with permission.

relevant properties are the bandgap and the electron affinity, as discussed in Section 6.7.
The mole fraction dependencies of these two parameters for x < 0.4 are

Eg(x) = 1.424 + 1.247x eV

χ (x) = 4.07 − 0.79x eV . (8.6)

From these it follows that the band offsets between AlGaAs and GaAs are �EC =
0.79x eV and �EV = 0.46x eV. These offsets are discontinuities at the band edges,
which give the energy-band diagram for a heterostructure a different appearance from
that for a homojunction. The example shown in Fig. 8.2 is for a P+-AlGaAs/p-GaAs/N+-
AlGaAs LED operating under forward bias. The procedures for constructing the band
diagram are the same as listed in Section 6.1.2 and Section 6.3.1. Because the electron
affinity for GaAs is greater than that of AlGaAs, the active region becomes a ‘potential
well’. The carriers injected from the neighbouring AlGaAs regions are confined by the
interfacial potential barriers, thereby encouraging recombination of electrons and holes
in the active region.

8.3 Radiative recombination efficiency

Now that we have engineered a situation in which recombination is confined to a
well-defined active region, we need to ensure that the recombination is predomi-
nantly radiative. This means, first of all, that the active material should be a direct
bandgap semiconductor (see Section 3.2.1). Secondly, to obtain a high rate of radiative
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recombination, high concentrations of both types of carrier are needed (see (3.19)).
This means a high level of injection into the active layer of both electrons and holes
must be established, which necessitates the forward-biasing of the device (see Fig. 8.2).
The background doping density of the active layer is usually chosen to make the region
p-type: in this way electrons are the minority carriers, and their superior minority-carrier
mobility ensures a more uniform carrier distribution in the active layer and, consequently,
a more spatially uniform generation of photons.

From (3.18), the net rate of recombination for electrons is given by �n/τe. The
radiative recombination efficiency is given by

ηrad = 1/τrad

1/τe
= τe

τrad
, (8.7)

where τe, the total minority-carrier lifetime for electrons, is given by (3.24).
The principal non-radiative contributors to τe are RG-centre recombination and Auger

recombination, as discussed in Section 3.2. To reduce the former, the active layer must
be of high crystalline perfection. This means that the active-layer material must be
lattice-matched to the substrate material on which it is epitaxially grown. For example,
from Fig. 8.3, the quaternary material (Alx Ga1−x )yIn1−yP is lattice-matched to GaAs
at y ≈ 0.5. The matching is maintained for varying values of the Al mole fraction x .
In practice, x < 0.5 as beyond that AlGaInP has an indirect bandgap. Incorporation
of dopants inevitably introduces defects into a crystal, so the p-type doping density in
the active layer is usually kept low (≈1016 cm−3). By comparison, the doping densities
in the adjoining confinement layers are one or two orders of magnitude higher. This
ensures that the space-charge region of the diode is contained largely within the active
layer, and that the parasitic resistances of the quasi-neutral regions are low.

Some idea of attainable values for ηrad can be obtained from Fig. 8.4, where the
radiative efficiency for GaAs is plotted as a function of the excess electron concentra-
tion. The various lifetimes were evaluated using the equations in Section 3.2.4 and the
recombination parameters from Table 3.1. Notice that high-level-injection conditions
have to be attained before ηrad becomes appreciable. The situation would be helped, of
course, if the rate of RG-centre recombination could be considerably reduced, as the top
curve indicates.

8.4 Extraction efficiency

The final stage in the electrical-optical conversion process is to get the internally gen-
erated photons out of the device. The extraction efficiency is defined as the ratio of
the optical power that actually escapes from the structure to the optical power that is
generated within the diode

ηext = Sout

Sgen
. (8.8)
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Figure 8.4 Radiative recombination efficiency for p-type GaAs of doping density 1016 cm−3. The
recombination parameters of Table 3.1 were used for the bottom curve. For the top curve, τe,RG

was increased by a factor of 10.

Extracting the light is inherently difficult because the relatively large value of refractive
index for most semiconductors means that the critical angle θc, beyond which total
internal reflection occurs, is small. For example, GaAs has a refractive index of about
3.5, so, at the semiconductor/air interface, from Snell’s Law

θc = arcsin

(
1

3.5

)
≈ 17◦ . (8.9)

The spontaneous light emission from an LED is omnidirectional, and if the light is taken
to emanate from a point source, it is easy to estimate the optical power that exits through
a segment of a spherical surface defined by a polar angle of θc. The situation is illustrated
in Fig. 8.5, from which the following expression can be deduced:

Sout = Sgen
2πr2(1 − cos θc)

4πr2
. (8.10)

For a point source in GaAs, this means that only about 2% of the optical power would
escape into the surrounding air!

The semiconductor layers in an LED are usually deposited epitaxially onto a substrate,
and the resulting structure is planar. Thus, the light source is more like a plane than
a point, so the extraction situation is not as bad as just described. Shaping of the
semiconductor die by sawing is possible, and wedge-shaped diodes, in which total-
internal reflection is reduced by effectively increasing θc have been reported. Details are
given by Schubert [2, Chapters 9,10], who also discusses designs with reflecting bottom
surfaces to improve the light output from the top surface. Here, we briefly describe the
innovative structure shown in Fig. 8.6.
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qr

Figure 8.5 Light emitted from a point source and emerging from a spherical surface only through
the shaded area. The fraction of emitted light to generated light is given by (8.10) with θ = θc.

Roughened n-GaN

Metal anode/cathode 

contacts

MQW active 

region

Ceramic Submount

n-GaN

p-GaN

Figure 8.6 LED with pyramidal front surface and flip-chip mounting. Reused with permission
from O.B. Shchekin, J.E. Epler, T.A. Trottier, T. Margalith, D.A. Steigerwald, M.O. Holcomb,
P.S. Martin and M.R. Krames, Applied Physics Letters, 89, 071109 (2006) [3]. Copyright 2006,
American Institute of Physics.

This is an InGaN/GaN LED, the semiconducting layers of which are grown on a
substrate that is subsequently removed by etching. The bottom layer (n-GaN) is then
subjected to an anisotropic etch that results in a texturing of the surface that is similar
to that employed in the high-efficiency solar cell of Fig. 7.8. The entire chip is then
flipped over so that the roughened surface becomes the top of the LED. The internally
generated light is guided by each cone via several internal reflections, after each one
of which the angle of incidence becomes more nearly normal, until the light emerges
near the tip of the cone. There are no contacts on the textured front surface, so it is
desirably transparent. The contacts to the front and back regions of the device are made
from the bottom, and are bonded to a ceramic substrate of high thermal conductivity.
In the reference cited, very high brightness was reported for blue-green versions of this
diode. We’ll meet this impressive LED again in Section 8.7 in the context of white light
emission.
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8.5 Wall-plug efficiency

Combining all the efficiencies of the previous sections, the output optical power density
can be written as

Sout = (VDηV ) (JDηC ) ηrad ηext , (8.11)

where VD and JD are the applied bias and diode current density, respectively. Rear-
rangement of this equation leads to an expression for the overall efficiency of the
electrical-to-optical conversion process, the so-called wall-plug efficiency:

Sout

Pin
= ηV ηC ηrad ηext . (8.12)

Wall-plug efficiencies for high-brightness LEDs are steadily improving, and a value
of 56% has recently been reported [4]. As you will have probably deduced from the
foregoing sections, the extraction efficiency is presently limiting performance, and,
consequently, it is the subject of intensive research and development. High values of the
other efficiencies can be obtained by: operating at a forward-bias voltage close to Eg/q,
using a heterostructure to confine the recombination to a well-defined active layer and
operating at high current to enhance radiative recombination.

8.6 Luminous efficacy and efficiency

The wall-plug efficiency is an example of a radiometric measurement, i.e., one that
involves the objective physical properties of power, as would be recorded by a calibrated
photodetector and a wattmeter. More commonly, figures-of-merit for LED optical per-
formance are quoted in terms of photometric units, i.e., relating to optical power that is
perceived by the eye. The eye is most sensitive to the colour green, as can be seen from
the plot of the eye sensitivity function γ in Fig. 8.7. So, the optical power perceived
by the eye can be expressed in watts as

∫
λ
γ S′

out(λ) dλ, where the prime signifies power,
rather than power density, and S′

out(λ) is the spectral power density in W/m. In practice,
the perceived optical power is usually expressed in units of lumens (lm), by applying a
conversion factor of 683 lm/W. This factor can be traced back to the old light-intensity
unit of candlepower, which was originally defined in terms of the light output of a stan-
dard candle. Thus, S′ watts of optical power are perceived by the eye as � lumens of
luminous flux according to

� = 683
∫

λ

γ S′
out(λ) dλ (lumens) . (8.13)

The luminous efficacy measures the effectiveness of the eye in perceiving optical power:

luminous efficacy = �

S′
out

(lm/W) . (8.14)
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Figure 8.7 Eye sensitivity function. Note that the function is normalized to the peak sensitivity,
which occurs in the green part of the spectrum. From Schubert [2, Fig. 16.7], C© Cambridge

University Press 2006, reproduced with permission.

Thus, for monochromatic emission at 555 nm, the luminous efficacy is 683 lm/W, as
indicated on Fig. 8.7. Outside of the visible range, the luminous efficacy is essentially
zero.

The final photometric property of interest to us is the luminous efficiency: it is
also expressed in lm/W, and relates the perceived optical power to the electrical power
supplied to the LED. Thus

luminous efficiency = �

ID VD
(lm/W) . (8.15)

To relate our earlier radiometric property of wall-plug efficiency to these photometric
properties, note that

luminous efficiency = wall-plug efficiency × luminous efficacy . (8.16)

8.7 White-light LEDs

With the advent of blue-green InGaN LEDs, it is now possible to obtain white light by
mixing the output from such LEDs with the red light from AlGaInP LEDs. This opens
up enormous opportunities for solid-state lighting in general-purpose applications.

The human eye senses colour through rod and cone cells in the retina that are specif-
ically sensitive to red, green, or blue light. Combinations of certain intensities of these
colours are perceived by the eye as white light. For standardization and colourimetric
reasons, three colour-matching functions have been developed. Each is centred on a par-
ticular wavelength (red, green, or blue) and has some spectral content such that specific
combinations of the intensities of the three sources can produce any desired colour. The
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Figure 8.8 Chromaticity diagram, showing the colours of the light from various LEDs. From
Schubert [2, Fig. 17.10], C© Cambridge University Press 2006, reproduced with permission.

chromaticity coordinates corresponding to the red, green, and blue colour-matching
functions are labelled x, y, z, respectively. The x-coordinate, for example, measures the
ratio of the stimulus of the red cells in the eye to the total stimulus of all the colour cells
to the entire visible spectrum. Thus, x + y + z = 1, and it is only necessary to stipulate
two chromaticity coordinates when specifying a particular colour. This is the basis of
the chromaticity diagram, as illustrated in Fig. 8.8. The point at the centre of the white
zone has chromaticity coordinates (x, y) = (1/3, 1/3).

Consider the points on the chromaticity diagram of the 450 and 525 nm GaInN
LEDs and of the 626 nm AlGaInP LED. Join-up the points to form a triangle. The area
within the triangle defines the range of colours that can be obtained by mixing different
intensities of the light from each of the three diodes. The range of attainable colours is
large; it is called the colour gamut, and it includes white light. Now take two LEDs,
e.g., the blue-green LED at 498 nm and the red LED at 626 nm. The line between these
two passes through the white zone, indicating that some power ratio of these two diodes
could produce white light.

Rather than use separate, discrete diodes to obtain the additive colour mixing, it is
possible to integrate diodes into a stack of layers, with one sequence of layers (con-
finement regions and active region). Such monolithic dichromatic structures, and even
higher-order stacks of diodes, are presently under development.

At the moment (2009), white-light LEDs usually employ wavelength conver-
sion rather than additive colour mixing. In wavelength conversion, some of the
diode-generated light is absorbed by a material and re-emitted at longer wavelengths. The
phosphorescent light and the residual shorter wavelength light can, collectively, span a
sufficiently large wavelength range that the output appears white. Stimulation of a cerium
doped yttrium aluminum garnet (YAG) phosphor by 460 nm light from a GaInN diode
is one particular, useful combination. A practical example using the high-brightness
flip-chip diode discussed earlier under a phosphor dome is shown in Fig. 8.9.
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Figure 8.9 The flip-chip InGaN/GaN LED of Fig. 8.6 emits into a YAG phosphor dome, resulting
in the emission of white light. From Shchekin and Sun [4], C© 2007 Institute of Physics, reproduced

with permission of the publishers, the author, and Philips Lumileds.

As white-light LEDs penetrate into general-purpose lighting markets, the issue of
colour rendering arises. The ability of an illuminating light source to faithfully render
the colours of the object being illuminated is called the colour rendering index, CRI.
The Sun is characterized by a CRI of 100, and other light sources are measured relative to
this. Tungsten-filament and quartz-halogen lamps have a CRI close to 100, but fluorescent
lights have a considerably lower index. The fluorescence is from a phosphor, which is
excited by a gaseous discharge, and the light emission lacks intensity in the red end of the
spectrum, giving a ‘cool-light’ experience. It follows that for LEDs to obtain high CRI
values, the light from several different LEDs will have to be combined. Trichromatic
white-light LEDs have been demonstrated with CRI> 90 [2, p. 338], and research in
this area is intense.

8.8 Prospects for general-purpose solid-state lighting

In 2001, 22% of the electricity consumed in the USA was used for lighting. The genera-
tion of this amount of electricity was responsible for 7% of all the carbon emitted into the
atmosphere in the US [6]. These startling figures stem from the poor wall-plug efficiency
of conventional lamps, e.g., ≈5% for incandescent lamps, and ≈20% for fluorescent
lamps. The former lamps originated in the 1870s, and the latter in the 1930s, so it is
perhaps time for something new on the lighting scene. High-intensity discharge lamps
are relatively new, and relatively energy efficient, but it is solid-state lighting, with its
direct conversion of electrical energy to light, as described in this chapter, that offers
most promise for sustainable lighting. This fact has been recognized, at least in the US,
and a roadmap to spur the development of white-light LEDs for general-purpose lighting
has been drawn-up. This map is shown in Fig. 8.10. Note that ‘luminous efficiency’, as
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Figure 8.10 Roadmap for the development of solid-state lighting. Projected performance of LEDs
is compared with conventional lighting. Note that ‘luminous efficacy’ in this table is the same as
‘luminous efficiency’ as we have defined it. From Tsao [5], C© 2004 IEEE, reproduced with

permission.

defined in this book, is sometimes confusingly referred to as ‘luminous efficacy of the
source’. Thus, the first row of the table in Fig. 8.10 is what we have called luminous
efficiency.

From the Table it is clear that the luminous efficiency and longevity of LEDs already
exceed that of incandescent lamps, but the flux (brightness), cost and CRI are all in need
of improvement. Therein lies the challenge for future designers!
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Exercises

8.1 The E-k relationships for the conduction bands of two semiconductor materials,
A and B, each with spherical constant-energy surfaces, can be expressed as

E A − 0.7 = αk2 and EB − 1.4 = 2α(k − k ′)2,

respectively, where α is a constant, k ′ > 0, and the energies are in units of eV. Both
materials have the same valence-band structure, with the top of the valence band
at E = 0 and k = 0.

Which material would make the better LED?
8.2 Fig. 8.2 shows the band diagram for a P+ pN+ AlGaAs/GaAs/AlGaAs LED under

forward bias. Construct the corresponding band diagram for an In0.49Ga0.51P/GaAs/
In0.49Ga0.51P LED.

8.3 Explain which of the above two LEDs (the AlGaAs device or the InGaP device) is
likely to have the better current efficiency.

8.4 When GaP is co-doped with oxygen and zinc two impurity levels occur at similar
spatial coordinates: the O-level is 0.80 eV below the GaP conduction-band edge,
and the Zn-level is 0.04 eV above the valence-band edge. LEDs made from
GaP:O:Zn emit in the red (≈700 nm). Although these diodes are not used
commercially nowadays, they are interesting because the emitted wavelength is
much shorter than would be expected from a simple O → Zn transition.

Suggest a possible reason for this ‘shift’ in wavelength.
8.5 Fig. 3.7 shows radiative recombination involving an electron and hole separated in

energy by the bandgap energy Eg . Radiative recombination can also occur between
carriers not at the band extrema but with equal momenta �k.
(a) Show that the photon energy dispersion relationship can be written as

Eph = Eg + �
2k2

2m∗
r

, (8.17)

where m∗
r is called the reduced effective mass, and (8.17) defines the joint

dispersion relation.
(b) Show that the reduced effective mass for GaAs is ≈0.059m0.

8.6 Regarding the energy dependence of the emission intensity of an LED, there are
two main factors to consider: (i) the joint density of states increases as

√
E − Eg ,

analogusly to the density of states in (3.32); (ii) the probability of occupancy of these
states falls off as exp(−E/kB T ), at least for a Maxwell-Boltzmann distribution.

Show that these dependencies conspire to give maximum emission at an energy
of Eg + kB T/2.

8.7 Two LEDs, A and B, each emit 1 mW of optical power when operating at a current
of 1 mA and a forward bias of 2 V.

LED A emits in the ultra-violet part of the spectrum, and LED B emits at 470 nm
in the blue part of the spectrum. For each diode evaluate:
(a) the wall-plug efficiency;
(b) the luminous efficacy;
(c) the luminous efficiency.
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The first commercial bipolar junction transistors (BJTs) were made from germanium.
Because of the low bandgap of this material (0.67 eV), the intrinsic carrier concentration
is high. As ni increases exponentially with temperature (see (4.19)), these Ge BJTs were
unstable, unless operating in a temperature-regulated circuit. Silicon, with its larger
bandgap, proved to be a better proposition, and the first Si BJTs appeared in the early
1950s. These transistors ushered in the era of solid-state electronics. They were not
challenged until MOSFETs started to appear in the 1960s, and to provide a superior
transistor for circuits in which a high input impedance was important. With the advent
of CMOS in 1963, the age of large-scale integration began, and the MOSFET became
the more ubiquitous transistor. However, as we show elsewhere in this book, the bipolar
transistor has inherent advantages in high-frequency performance, due to its superior
transconductance, and in high-power applications, due to its favourable geometry. BJTs
are also more robust than MOSFETs, which is why many readers will have become
familiar with them during their electronics laboratory classes.

Perhaps the biggest event in BJT development in the last 20 years has been the advent
of heterojunction bipolar transistors (HBTs). In the single heterojunction version of
these transistors, dissimilar semiconducting materials are used for the emitter and the
base, whereas the base and collector are made from the same semiconductor. Thus,
there is one heterojunction, e.g., an Np-junction as discussed in Section 6.7, and one
homojunction, e.g., a pn-junction, as discussed in Chapter 6. For an Npn HBT, the idea
is to choose two materials that give a barrier height for holes that is much larger than
that for electrons. This allows a much larger doping density to be used in the base, when
compared to conventional BJTs, thereby giving a very low base resistance, without
excessive base/emitter hole current. The benefit of this is discussed at length in the
later chapter on high-frequency transistors. We have already come across heterojunction
diode structures in the chapter on LEDs, and have described the formation of such
structures by the sequential, epitaxial deposition of thin semiconducting films onto a
substrate that would, ideally, be lattice-matched to the deposited films. In particular, the
two materials comprising the heterojunction must have very similar lattice constants (see
the length a in Fig. 2.1), otherwise there will be defects at the interface, causing unwanted
recombination-generation centres (see Section 3.2.2). From the data in Fig. 8.3 it can
be seen that materials from the AlAs-GaAs materials system, and from the GaP-InP
system, are prime candidates for HBTs constructed on GaAs substrates. Silicon is not
such a promising material with which to form heterojunctions as there is not the same

153
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Figure 9.1 Basic structure of a InGaP/GaAs HBT. The n+ emitter cap layer facilitates ohmic
contacting to the emitter metallization, and the n+ sub-collector reduces the collector resistance.
The main part of the transistor is within the region defined by the dashed-line box. This part of
the transistor can be represented by the basically 1-D element shown in the lower part of the
figure. This reduced structure is valid because the critical dimension is the basewidth (vertical
dimension), which is much less than any significant lateral feature size.

variety of lattice-compatible materials to choose from. However, suitably defect-free
junctions can be grown between Si and a dilute alloy of Si1−x Gex , with the Ge mole
fraction x not exceeding about 15%. By increasing the Ge mole fraction through the
base, the bandgap gets progressively smaller, and a field is created in the base. This field
aids the transport of electrons across the base to the collector, thereby improving the
high-frequency performance of the transistor, as discussed in Chapter 14. The HBT is a
good example of a device designed by bandgap engineering [1].

9.1 Basic properties

Fig. 9.1 shows the basic structural arrangement of an HBT using semiconductor materials
of the III-V compound variety. The various semiconducting layers would be deposited
epitaxially. Note the pairs of contacts for the base and the collector. This arrangement is
to reduce both the base spreading resistance (see Section 16.3.1) and the series resistance
of the access regions to the main part of the transistor. The latter is, essentially, a vertical
slice through the transistor, as shown in the lower part of Fig. 9.1.
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Figure 9.2 Equilibrium energy-band diagram of the base/emitter region of a p-GaAs/N-InGaP
HBT. Note the equality of the electron affinities.

The energy band diagram for an HBT is constructed following the procedure detailed
in Section 6.1.2. In Fig. 9.2 we show the particular example for the single heterojunction
bipolar transistor depicted in Fig. 9.1. It comprises: an emitter of N-In0.49Ga0.51P, a
base of p+-GaAs and a collector of n−-GaAs. The particular mole fractions for In and
Ga in the InGaP layer are chosen to give a good lattice match to GaAs (see Fig. 8.3).
The bandgap for this material is 1.86 eV. The electron affinities of GaAs and In0.49Ga0.51P
are essentially the same, so the difference in bandgaps (≈0.4 eV) is taken up entirely by
the band-edge offset in the valence band. This illustrates the defining feature of HBTs: the
creation of different energy barriers for electrons and holes at the emitter/base junction.
As we have done elsewhere in this book, we follow the common practice of denoting
the region of higher bandgap by an uppercase symbol.

By having a higher hole barrier, the doping density in the base can be increased
without compromising the current gain.1 The high base doping density also allows a
very narrow base to be used without causing the base access resistance to become
excessive. A narrow base is advantageous because of two reasons: it enables a steep
profile for the minority carrier concentration to be maintained, which leads to a high
collector current; it means that there is less minority carrier storage and, consequently,
less base-storage capacitance. Both these factors help in the attainment of a high fT . The

1 Base doping densities of 1019−1020 cm−3 are common, and are 1–2 orders of magnitude higher than in the
emitter.
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reduced base resistance helps in realizing a high fmax. Both of these frequency metrics
are discussed in Chapter 14 on high-frequency devices.

From (6.39) it follows that the built-in voltage for our sample device is

qVbi = kB T ln

[
NCp

NC N

n0N

n0p

]
. (9.1)

Assuming similar effective densities of states for InGaP and GaAs, the built-in voltage
for an emitter doping density of ND = 3 × 1017 cm−3 and a base doping density of
NA = 6 × 1019 cm−3, for example, is 1.46 V.

In preparation for deriving an expression for the current in the next section, we
recognize a very important difference between the ideal diode discussed in Section 6.6
and a modern HBT: the width of the base. In an ideal diode it is infinite, so any carriers
injected from the emitter have ample opportunity to make collisions, with the result
that their distribution at the edge of the emitter/base space-charge region is of a near-
equilibrium form. It is this characteristic that allowed us to use Shockley’s Law of the
Junction to get n(xdp), for example.

In a modern HBT, the basewidth can be ≈30 nm. To estimate the mean free path for our
example from (5.45) we need the electron mobility in GaAs for NA = 6 × 1019 cm−3, and
the mean unidirectional velocity for injection from an emitter with ND = 3 × 1017 cm−3.
From Fig. 5.3 we find µe ≈0.075 m2(V s)−1, and from Table 4.2 we get vR ≈ 105 m s−1.
Thus, the mean-free-path length is ≈10 nm. This is insufficient to assume that all carriers
injected into the base are ‘thermalized’ by collisions. However, it is reasonable to assume
that the electrons injected from the emitter maintain a hemi-Maxwellian distribution
through the emitter/base space-charge region. We denote the part of this positive-going
(collector-directed) electron distribution that overcomes the barrier as n∗

E/2. Further, we
recognize this as one-half of the boundary condition n(xdp) given by Shockley’s Law of
the Junction. Thus,

n∗
E

2
= n0E

2
e−(Vbi −VB E )/Vth ≡ n0B

2
eVB E /Vth , (9.2)

where n0E and n0B are the equilibrium electron concentrations in the emitter and base,
respectively.

9.2 Collector current

Our intention is to obtain an expression for the collector current IC in terms of the
transistor’s main controlling voltage Vaj ≈ VB E . We do this by considering electron flow
in the base. The portion of the base between the junction space-charge regions is called
the quasi-neutral base: it is essentially field-free, so we can assume reasonably safely
that any minority-carrier currents therein are due to diffusion. This transport mechanism
is fuelled by carrier concentration gradients, so we need to know the electron profile
in the quasi-neutral base. This can be done by combining the equations for electron
transport and electron continuity from our master set of equations (5.24). Under the
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Figure 9.3 Diffusion lengths for minority carrier electrons (solid line) and holes (dashed line) in
gallium arsenide. Computed from data on the doping density dependence of µ and τ from (5.31)
and (3.22), respectively.

drift-diffusion approximation and in steady-state, these yield

d2n

dx2
− n − n0B

L2
e

= 0 , (9.3)

where Le is the electron minority-carrier diffusion length. This equation is the same
as appeared in our analysis of the ideal diode (6.31), but its solution here will be
different because of the different boundary conditions. The minority-carrier diffusion
length can be thought of as a measure of the distance a minority carrier diffuses before
it recombines with a majority carrier. Typical values for GaAs are shown in Fig. 9.3,
and can be evaluated using the diffusivity from (5.31) and the Einstein Relation, and the
minority-carrier lifetime from (3.22).

If the quasi-neutral basewidth WB in an Npn HBT is much less than Le, then essentially
no recombination takes place in the base. Under these circumstances, (9.3) reduces to

d2n

dx2
= 0 , (9.4)

i.e., the electron diffusion current Je = q De dn/dx is a constant. Having a short base
is important practically, as it leads to a high IC and, as explained in the high-frequency
chapter, to good high-frequency performance. Here, we consider this case: it allows us
to compute Je if we can find the electron concentration at any two points in the base.
We will attempt to do this for the points at either end of the quasi-neutral base, xdp and
xdp + WB in Fig. 9.4.

The forward bias lowers the energy barrier at the emitter/base junction, facilitat-
ing injection of electrons from the emitter into the base. These electrons are drawn
from the positive-going hemi-Maxwellian at x = −xdn , which is the other end of the
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Figure 9.4 HBT in the active mode of operation (VB E > 0, VBC < 0).

space-charge region in the depletion approximation. The total width of the depletion
region is W = xdn + xdp. Let us assume that W is less than a mean-free path for
electrons.2 Under these conditions, the right-going part of the electron distribution at
x = xdp, as illustrated in Fig. 9.4, is given by (9.2). As these electrons enter into the
base they will scatter, and some will be re-directed towards the emitter, thus contributing
to the left-going concentration at x = xdp. Another contribution to this left-going dis-
tribution will come from electrons injected into the base from the collector. There will
not be many of these electrons because the reverse bias at the collector/base junction
increases the barrier therein. However, we will allow for some to be present, and some of
them, after scattering and reaching x = xdp will be moving to the left. Let nL represent
the total, left-going distribution of electrons at x = xdp. The situation is illustrated in
Fig. 9.4. Thus

n(xdp) = n∗
E

2
+ nL . (9.5)

Further, let us assume that the scattering events have reduced nL to a hemi-Maxwellian
distribution. Therefore, the electron current density at x = xdp is

Je(xdp) = −q
n∗

E

2
2vR − (−qnL2vR) . (9.6)

Equation (9.6) can be used to eliminate nL from (9.5), yielding the boundary condition

n(xdp) = n∗
E + Je(xdp)

q2vR
. (9.7)

Note that this expression reduces to Shockley’s Law of the Junction (6.29) for either low
currents or very high vR . In a completely analogous way, the boundary condition at the

2 This is a good assumption, at least for forward bias, as can be verified by doing Exercise 9.1.
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other end of the quasi-neutral base can be written

n(xdp + WB) = n∗
C − Je(xdp + WB)

q2vR
, (9.8)

where n∗
C/2 is the concentration of electrons in the collector with enough left-directed

kinetic energy to surmount the collector/base barrier, i.e.,

n∗
C

2
= n0B

2
eVBC /Vth . (9.9)

We now have two carrier concentrations, at points separated by a known distance, thus

Je = q De

[
n(xdp + WB) − n(xdp)

]
/WB . (9.10)

Substituting for the carrier concentrations from (9.7) and (9.8), we obtain

Je = −qn0B

[
eVB E /Vth − eVBC /Vth

]
.

1
WB
De

+ 1
vR

. (9.11)

This equation has been ordered to highlight the charge and velocity terms. The reciprocal
of the latter is the sum of two reciprocal velocities, or ‘slownesses’. If the ‘diffusion
velocity’ De/WB is much less than the ‘injection’ velocity vR , then the process of
diffusion limits the current. This used to be the case in practical bipolar transistors,
but fabrication techniques have improved to the point where basewidths of <50 nm
are routinely employed, in which cases it becomes necessary to include the 1/vR term,
otherwise the current would be overestimated, and would not be asymptotic to its ballistic
limit of −q(n∗

E/2)2vR . This is illustrated in Fig. 9.5. The electron current exiting the
collector can be viewed as a positive charge flow into the collector from the external
circuit: IEEE convention deems this to be a positive current, therefore

IC ≡ −Je A ≡ IS

[
eVB E /Vth − eVBC /Vth

]
, (9.12)

where A is the cross-sectional area, and IS collects together the non-exponential
terms from (9.11) and is the transistor equivalent to the ideal diode saturation current
of (6.37).

Transistor action in the HBT is exemplified by the plot of JC shown in Fig. 9.6. The
controlling voltage of the base/emitter junction is VB E , and the voltage across the other
junction VBC is embedded in VC E = VC B + VB E ≡ −VBC + VB E . Note the similarity of
this set of curves, which constitute the collector current characteristic, with the drain
current characteristic shown in the MOSFET chapter. There are some subtle differences,
though. Firstly, there is not really a linear region at low collector/emitter bias. This is
because conduction is never resistive, but is always diffusive (except in the ballistic case).
Secondly, we have produced a characteristic without recourse to a threshold voltage, as
is invoked in some MOSFET models to define the ON condition. In bipolar transistors,
IC depends exponentially on the controlling voltage VB E , so it is arbitrary where the ON
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Figure 9.5 Collector current density vs. basewidth, showing the effect of including the
velocity-boundary condition vR (solid line), and of neglecting to include vR (dashed line). The
parameters for the InGaP/GaAs device are: NE = 3 × 1017 cm−3, NB = 6 × 1019 cm−3,
VB E = 1.4 V, VC E = 3 V.
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Figure 9.6 Collector current characteristic with VB E as a parameter. The parameters for the
InGaP/GaAs device are: NE = 3 × 1017 cm−3, NB = 6 × 1019 cm−3, WB = 30 nm.
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condition is deemed to begin.3 Often in books on electronic circuits a turn-on voltage
is specified for a bipolar transistor, and is usually taken to be VB E = 0.7 V for a Si BJT.
For HBTs made from wider bandgap materials, a larger value is appropriate.

In the description of the derivation of (9.11) the base/collector was mentioned as being
reverse biased. However, the mathematics is quite general, and the equation applies for
both forward- and reverse-bias of the base/collector junction and, indeed, to both bias
modes for the base/emitter junction. To appreciate the effect of forward biasing the
collector/base junction, pick a curve on Fig. 9.6 and begin at large VC E , i.e., when
VC B is positive, meaning that the collector/base n/p junction is reverse biased. Now,
stay on the curve (fixed VB E ) and note that IC does not change as the reverse bias
on the collector/base junction is reduced. This is because the electrons injected into
the base from the emitter are easily collected by the favourable electric field in the
base/collector space-charge region. However, there comes a point as VC E is reduced
when the collector/base junction becomes forward biased; this happens when VC B < 0,
i.e., when VC E < VB E . The collector now starts to inject electrons into the base, and
this flow counters the flow from the emitter. The flow from the collector increases
exponentially with VBC , so IC decreases drastically. Confusingly, this region where
both junctions are forward biased is called the saturation region, and the region where
IC is actually constant, i.e., when the base/emitter junction is forward biased and the
collector/base junction is reverse biased, is called the active region.4

To complete the description of the operating modes: when both junctions are reverse
biased the HBT is said to be cut-off. Our treatment has focused on the normal mode of
operation. If the transistor were to be operated with the actual collector being used as
the emitter, then that would be the inverse mode of operation. Such a distinction is not
made in the case of the MOSFET because in that device the source and drain are usually
identical physically.

9.3 Base current

In the MOSFET the presence of the gate oxide means that we don’t have to be concerned
with the DC current at the controlling electrode. In a bipolar junction transistor, however,
there is a DC current at the controlling base electrode (see Fig. 9.7). Holes flow into the
base to: (i) replenish holes lost to recombination with electrons in the base; (ii) replenish
holes lost to recombination with electrons in the base-emitter space-charge region;
(iii) supply any hole current across the reverse-biased base/collector junction; (iv) supply
the hole current due to injection of holes into the emitter across the forward-biased base-
emitter junction. We have already given reasons for ignoring recombination in the base,
but only for the purpose of computing the collector current. In other words, we have said

3 In a MOSFET, ID depends exponentially on the surface potential ψs , but the latter is not always linearly
related to the controlling voltage VGS , as we describe in Chap. 13.

4 The reason why ‘saturation’ is used to describe a region in which IC is not constant is explained in
Section 13.2.
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Figure 9.7 The various mechanisms of hole current in an HBT in the active mode of operation.

that any recombination current in the base is small compared to the collector current.
This does not mean that any recombination current is small compared to the base current,
which, in a well-designed transistor is much lower than IC . We calculate this portion of
IB in the next subsection.

Regarding mechanism (ii), there will be recombination in the forward-biased
base/emitter space-charge region because it is a region where there are large num-
bers of both electrons and holes. Any current due to this recombination will show up in
the emitter and base leads at low VB E , when the base/emitter barrier is high and there
is little net hole injection into the quasi-neutral emitter. However, at moderate forward
bias, this injection current, which is mechanism (iv), becomes large and dominates
over the space-charge region recombination current. Here, we will ignore the latter.
Also, the reverse-bias current of mechanism (iii) can be safely neglected. The remaining
mechanism (iv), the injection of holes into the emitter, is treated in Section 9.3.2.

9.3.1 Recombination in the base

Mechanism (i) in Fig. 9.7 is due to recombination in the base, and can be computed from
the electron continuity equation in the master set of equations (5.24)

Je,rec =
∫ Je(xdp+WB )

Je(xdp)
d Je = q

∫ xdp+WB

xdp

nB(x) − n0B

τe
dx , (9.13)
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where nB is the spatially varying electron concentration in the base. Assuming the linear
profile used in deriving the earlier expression for IC , we have5

nB(x) = n(xdp) − [
n(xdp) − n(xdp + WB)

]
(x/WB)

=
(

n∗
E + Je(xdp)

q2vR

)(
1 − x

WB

)
+
(

n∗
C − Je(xdp + WB)

q2vR

)
x

WB
. (9.14)

Substituting into (9.13), integrating, re-arranging, and converting to current, yields

IB,rec = Aqn0B

[
(eVB E /Vth − 1) + (eVBC /Vth − 1)

]{ 1
2τe
WB

+ 1
2vR

}
, (9.15)

where A is the cross-sectional area of the emitter: in our one-dimensional model, it is the
same area as used for evaluating the collector current from (9.11). The effective velocity
in this case is the term within the curly brackets: it reduces to the usual expression of
WB/2τe when vR is large.

9.3.2 Hole injection into the emitter

The region of interest is that of the quasi-neutral emitter, (−WE − xdn) < x < −xdn , as
shown in Fig. 9.7, and we are concerned with the hole current Jh in the emitter due to
hole injection over the base/emitter barrier into the quasi-neutral emitter. The emitter
is usually much wider than the base so recombination of the injected holes must be
considered. Thus, from the equations for the hole diffusion current and the hole charge
continuity in the drift-diffusion approximation we get

d2 p

dx2
− p − p0E

L2
h

= 0 , (9.16)

where p0E is the equilibrium hole concentration in the emitter, and Lh is the hole
minority carrier diffusion length in the emitter. A convenient form of the general solution
to (9.16) is

p(x) − p0E = B cosh
x

Lh
+ C sinh

x

Lh
. (9.17)

Because the emitter length may be greater than Lh , we cannot ignore recombination
of the injected holes in the quasi-neutral emitter. However, the relatively long length of
the emitter means that there is no need to bound the carrier velocity as we did for Je

in the base by including the thermal velocity 2vR in the boundary conditions. Thus, the
boundary condition for the hole concentration at the emitter-edge of the depletion region
follows without modification from Shockley’s Law of the Junction

p(−xdn) = p0E eVB E /Vth . (9.18)

5 Assuming a linear profile, which results from having no recombination, and then using that profile to
estimate recombination by allowing for a finite value of τB is permissible so long as there is not much
recombination, i.e., Le > WB (see Exercise 9.6).
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At the other end of the emitter we assume an ohmic contact, thus

p(−xdn − WE ) = p0E . (9.19)

To simplify the algebra, let us use the length variable x ′ in place of x , where x ′ = x + xdn .
Thus, the boundary conditions yield values for the constants

B = p0E (eVB E /Vth − 1)

C = −p0E (eVB E /Vth − 1) coth
−WE

Lh
. (9.20)

The hole current density is

Jh(x ′) = −q Dh
dp

dx ′ = −q
Dh

Lh

(
B sinh

x ′

Lh
+ C cosh

x ′

Lh

)
. (9.21)

Substituting for the constants B and C , the hole current in the emitter at the edge of the
depletion region is

Jh(−xdn)A = −q A
Dh

Lh
p0E (eVB E /Vth − 1) coth

WE

Lh
, (9.22)

where A is the emitter area.6

Assuming no recombination in the depletion region, then Jh(−xdn)A is also the hole
current on the base side of the depletion region. We label this as IB,inj; thus, it can be
added to IB,rec to get the total base current.

The two components of IB are plotted in Fig. 9.8 for the case of a InGaP/GaAs
HBT with WE = 159 nm and WB = 30 nm. Even for such a short-base device, the
recombination component of base current is much more significant than the so-called
back-injection hole current. This is a testament to the formidable reflecting action of
the large hole barrier, which is engineered by choosing materials for the heterojunction
with a large valence-band offset. Operation of the transistor in the saturation regime
would increase the importance of IB,rec, due to the influx of electrons from the forward-
biased collector/base junction. Also shown in the figure is the collector current; plotted
in this way it shows the transfer characteristic of the device. A semi-logarithmic plot
of collector and base currents vs. VB E is known as a Gummel plot, after H.K. Gummel,
a pioneer in the field of semiconductor device modelling.

9.4 DC equivalent-circuit model

The DC equivalent-circuit model of the HBT must represent the collector current, (9.11)
and (9.12), and the base current, (9.15) and (9.22). The circuit of Fig. 9.9 does this, and
also includes the base current due to injection of holes into the collector. The latter is
mechanism (iii) from Section 9.3, and it is described by an expression similar to (9.22).
Note that, in the equivalent circuit, the base recombination term has been separated into

6 The minus sign in this case arises because the hole flow we are considering is in the negative x direction.
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Figure 9.8 J-V plots for an HBT showing the collector current density (solid line), and two
components of the base current density: JB,rec (dashed line) and JB,inj (stippled line). The
parameters for this InGaP/GaAs device are: NE = 3 × 1017 cm−3, NB = 6 × 1019 cm−3,
WE = 150 nm, WB = 30 nm, VC E = 3 V, and the minority carrier properties are as per Fig. 9.3.
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Figure 9.9 HBT DC equivalent circuit. The current source is from (9.11), with IS representing the
non-exponent part of that equation. Hole injection from the base into the emitter is given by
(9.22) and is represented by the diode IB,inj(VB E ). Hole injection into the collector is given by a
similar expression (replace E with C and use the correct, doping-density-dependent values for
Dh and Lh), and is represented by the diode IB,inj(VBC ). The other two diodes represent
recombination in the base of electrons injected from the emitter and the collector, as described
by (9.15).
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two diode-like terms, one associated with each junction, thereby emphasizing the origin
of the electrons in the base, with which the holes recombine. Resistors are also shown
to represent the resistances of the various quasi-neutral and access regions.7

An often-used metric for a bipolar transistor is the DC, common-emitter current
gain β0. In this configuration, the emitter lead is common to the input- and output-pairs
of terminals, so that the controlling parameter is the base current. Thus

β0 = IC/IB . (9.23)

In the active mode of operation the upper two diodes in the equivalent circuit can be
neglected, and the current gain can be simply expressed in a constant, bias-independent
form, using (9.11), (9.22) and the relevant part of (9.15). Thus, if the parameter in
Fig. 9.6 were IB rather than VB E , then a family of curves with equal base steps would
show equally spaced collector currents in the active region.

In the common-base connection the input current is the emitter current and the DC,
common-base current gain is given by

α0 = IC/|IE | . (9.24)

A typical value might be α0 = 0.99, which would yield a transistor with a β0 that was
100 times larger.

Exercises

9.1 Consider an Np+n, Al0.3Ga0.7As/GaAs HBT, for which the emitter and base doping
densities are 5 × 1017 cm−3 and 1 × 1019 cm−3, respectively. The HBT is operating
in the active mode with a forward bias of 1.4 V.
(a) Calculate the width of the space-charge region W at the emitter/base junction

using the Depletion Approximation.
(b) Estimate the mean-free-path length l̄ for electrons, and determine if it is

reasonable to assume that there is no scattering in the junction space-charge
region.

9.2 Consider an npn GaAs BJT operating in the active mode with VB E = 1.25 V
and VBC = −3.0 V. The emitter doping density is 1018 cm−3 and the width of the
emitter quasi-neutral region is 100 nm. The corresponding values for the base are
1019 cm−3 and 25 nm.

Estimate β0, and show your calculations of the relevant currents.
9.3 Make the above BJT into an Npn HBT by changing the emitter to lattice-matched

InGaP, i.e., In0.49Ga0.51P (see Fig. 8.3). The minority carrier properties of the InGaP
can be taken to be the same as for correspondingly doped GaAs.

Estimate β0.

7 See Section 14.6.1 for details on how to estimate RB , which is particularly important in high-frequency
applications.
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9.4 Compare the values of β0 from the previous two questions and state the principal
reason(s) for their large difference.

9.5 Besides the improvement in current gain, the HBT offers a much reduced base
resistivity, which is very important in high-frequency devices.

Re-visit Exercise 9.2 and adjust the base doping density so that this BJT yields
a similar β0 to the HBT of Exercise 9.3.

Compare the base resistivities of the BJT and HBT.
9.6 In Section 9.3.1, the base recombination current was computed from the seemingly

inconsistent approximation of a linear profile for the minority carrier electrons. If
this approximation is not made, but Shockley boundary conditions are assumed,
i.e., vR → ∞, then the base current is easily shown to be [2]

IB,rec = Aqn0B

[
(eVB E /Vth − 1) + (eVBC /Vth − 1)

]
· De

Le

{
coth(WB/Le) − 1

sinh(WB/Le)

}
. (9.25)

(a) How short does the quasi-neutral base have to be, relative to the electron
diffusion length, for this equation to be adequately approximated by (9.15)?

(b) Is this condition satisfied in the HBT of Exercise 9.3?
9.7 Consider an Np+n, Al0.3Ga0.7As/GaAs HBT under forward bias.

(a) Using Fig. 6.9a as a guide, sketch the energy-band diagram for the emitter/base
part of this Type I HBT. Note that the electron energy barrier is parabolic, and
that tunnelling from the emitter to the base is possible.

(b) To derive an expression for the transmission probability, start with (5.57),
which is an approximate expression for T (E) for a non-rectangular barrier.
Apply this equation to the parabolic barrier of height qVN on the N-side of the
junction, and show that

T (E) = e−γ , (9.26)

where

γ = qVN

E0

[√
1 − X − X ln

(
1 + √

1 − X√
X

)]
,

E0 = (�q/2)
√

ND/(m1ε1),

and

X = E/qVN .

9.8 Consider an Np+n, Al0.3Ga0.7As/GaAs HBT, for which the emitter and base doping
densities are 5 × 1017 cm−3 and 1 × 1019 cm−3, respectively. The HBT is operating
in the active mode with a forward bias of 1.4 V.
(a) Use (9.26) to obtain a plot of T (E) vs. E/qVN within the energy range for

tunnelling, i.e., from Fig. 6.9a, −χp ≤ E ≤ −χN − qVbi + qVN .
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(b) Now estimate the spectral carrier density n(E) = g(E) f (E) of electrons avail-
able for tunnelling. Use the Maxwell-Boltzmann distribution function, and
display your result graphically.

(c) The spectral tunnelling flux is n(E)T (E): plot this against the normalized
energy E/qVN .

The result should show that the peak tunnelling flux occurs at an energy of
≈0.75qVN .
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The MOSFET1 was the subject of a patent in 1933 [1], but did not reach commercial
maturity until about thirty years later. The delay was principally due to a lack of under-
standing of the importance of the oxide/semiconductor interface, and to the time taken
to develop suitable fabrication procedures, notably for the growth of the thin gate oxide.
Now, in the early 21st century, the science of silicon, and the art and technology of its
processing into electronic devices have reached such a state of maturity that billions of
Si MOSFETs are made weekly. The claim that the Si MOSFET is the most abundant
object made by mankind is difficult to refute [2].

In this chapter the so-called ‘long-channel’ FET is considered. The basic electrostat-
ics of the device is developed, and the DC current-voltage characteristics are derived
using two models that are very widely used in the simulation of Si MOSFET integrated
circuits: PSP and SPICE. PSP stands for ‘Penn-State Philips’, after the two organiza-
tions that have been largely instrumental in bringing this surface-potential model to a
state of commercial viability [3]. It is the Compact Model Council’s new, industrial-
standard, MOSFET model.2 SPICE stands for ‘Simulation Program with Integrated
Circuit Emphasis’. It was originally developed by Lawrence Nagel at the University of
California at Berkeley in the mid-1970s, and has evolved extensively since then [4]. PSP
is surface-potential based, whereas SPICE is threshold-voltage based. Here, we start
with the more general and accurate surface-potential model, and then we show how the
threshold-voltage model is derived from it.

The material in this chapter provides the basis for understanding how the MOSFET
has developed into today’s dominant digital transistor, as described in Chapter 13. Our
treatment draws heavily on the classic work of Tsividis [5].

10.1 Transfer characteristic

A typical Si MOSFET is shown in Fig. 10.1. The particular transistor shown has two
np-junctions, with the highly doped (n+) regions being called the drain and the source.

1 Metal-Oxide Field-Effect Transistor. In this acronym ‘M’ literally stands for metal, but it is also used for
any highly conductive gate material, e.g., heavily doped polycrystalline silicon, as is still used for most Si
MOSFETs, although there is now a return to metal gates in very high-performance devices (see Chapter 13).

2 Compact Model Council: http://www.geia.org/Standard-Models-and-Downloads

169
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Figure 10.1 Basic MOSFET structure. Note the orientation of the axes x and y. (a) Actual
arrangement, showing the body contact on the top surface, and defining the length L and width
Z of the channel, the thickness tox of the oxide, and the depth y j of the source and drain
np-junctions. (b) 2-D representation with the body contact on the bottom.

The p-region is called the body or the substrate. The separation between the source
and drain regions is the defining physical metric; values less than 50 nm are achievable
today.3 We will show how the drain current ID is due to the flow of electrons from
the source to the drain. The conductivity type of the carriers leads to this device being
called an n-channel MOSFET, or an N-FET. A complementary P-FET can be real-
ized by reversing the doping type of each region. Only the N-FET will be discussed
here.

Strictly speaking, the MOSFET is a four-terminal device. For the moment, let us
assume that no voltage is applied between the source and the body, i.e., VSB = 0.
Application of voltage between the gate and the body VG B (≡VGS in this case), for a

3 To attempt to comprehend such a small size, realize that the diameter of a human hair is about 2000 times
greater.
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Figure 10.2 Transfer (or gate) characteristic at VDS = 0.1 V for a CMOS90 NFET with the
properties listed in Appendix C. The threshold voltage is 0.24 V. MEDICI (Synopsys) simulation
using the DDE version of (5.24).

given drain-source voltage VDS > 0, leads to the transfer- or gate-characteristic shown
in Fig. 10.2. Note how the drain current ID increases exponentially at first, and then less
strongly as VG B is increased. The sequence of events that causes this behaviour is:

� the positive VG B repels holes from the substrate close to the oxide/semiconductor
interface (also known as the surface). This creates a space-charge layer, across which,
in the y-direction, some of VG B is dropped;

� this potential in the top part of the body also causes a voltage drop across the depleted
body/source pn-junction, i.e., in the x-direction. This forward biases the source/body
diode and electrons are injected into the body;

� the electron injection is heaviest at the surface because this is where the potential in the
body is highest. Thus, the electrons form a thin channel at the surface. In accordance
with standard pn-junction theory (6.29), this charge increases exponentially with
applied bias;

� however, eventually, this electron charge becomes so dense that it electrostatically
screens the body from the gate. Further increases in VG B are absorbed almost entirely
in the oxide, and the exponential relationship between channel charge and gate bias is
lost.

Don’t be misled by the above into thinking that the basic, exponential, I-V relationship
of a forward-biased diode no longer applies at high gate bias. It is just that VG B is
no longer the operative bias. The relevant bias for the forward-biased source/channel
diode is (ψs − VS), where ψs is the surface potential in the body, and VS is the source
potential, which we’ll take to be zero here. ID is still related exponentially to ψs , but the
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Figure 10.3 Representation of the oxide and the electrons and ions in the semiconductor as
capacitors, for the purpose of determining the surface potential.

latter is no longer nearly equal to VG B . This can be appreciated from Fig. 10.3, which
shows the potential-divider action of the series arrangement of the oxide capacitance
and the semiconductor capacitance, i.e.,

�ψs = �VG B
1

1 + Cs/Cox
. (10.1)

Cox can easily be appreciated by its geometric, parallel-plate, nature; Cs is due to the
gate-potential-induced changes in charge in the channel �Qn , and in the body �Qb.
Writing the sum of these charges as �Qs , the capacitances per unit area, as defined and
discussed in Chapter 12, are given here by

Cox = − �Qs

�ψox
≡ εox

tox
and Cs = −�Qs

�ψs
, (10.2)

where ψox is the voltage drop across the oxide, εox and tox are the permittivity and
thickness of the oxide, respectively.

Equation (10.1) supports our earlier description of the gate characteristic: at low
gate bias, the charge in the semiconductor is small, so Cs � Cox , and ψs changes
almost exactly as VG B , giving an exponential relationship between ID and gate bias; at
higher bias, Cs becomes appreciable due to the increased charge in the channel, and,
consequently, the change in ψs with VG B is much diminished. The electron charge Qn ,
the movement of which constitutes the current ID , still increases exponentially with ψs ,
but no longer exponentially with VG B . The boundary between the exponential and non-
exponential regions is gradual, but it is usually associated with the threshold voltage
VT . The region VGS < VT is the sub-threshold region, and the drain current at VGS = 0
is called the OFF current. For VGS > VT we have the super-threshold region, and the
drain current in this region is often called the ON current.
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Figure 10.4 MOS capacitor resulting from taking a slice through the MOSFET and ignoring the
source and drain. From Pulfrey and Tarr [6, Fig. 7.9].

10.2 Electrostatics

10.2.1 MOS capacitor

Consider a slice of the MOS structure from gate to body (see Fig. 10.4); ignore the
lateral connections to the source and drain, and imagine a metallic contact to the body
on the bottom. Such a two-terminal structure is called a MOS capacitor. The three com-
ponents of the structure – gate, insulating oxide, semiconducting body – are represented
energetically in Fig. 10.5(a). For specificity, the gate is taken to be heavily doped, n-type
polysilicon, for which the Fermi level is coincident with the conduction-band edge,
the insulator is silicon dioxide, and the semiconducting body is p-type silicon. To equi-
librate the system, the Fermi level in the body must be raised; this is accomplished by
transfer of electrons from the gate. The transferred electrons recombine with holes in the
p-type body, creating a space-charge region of ionized acceptors near to the interface with
the oxide. Thus, there is band-bending in this region. The gate acquires a net positive
charge due to its loss of electrons. The charge difference across the oxide creates an
electric field therein. The total potential differences across the oxide and semiconductor
are ψox and ψs , respectively (see Fig. 10.5b). The sum of these two gives the built-in
voltage Vbi for the MOS capacitor. Inspection of Fig. 10.5b reveals

E0 − qVbi − �G = E0 − �S

Vbi = �S − �G

q
, (10.3)

where �G and �S are the work functions of the gate and the semiconducting body,
respectively.

Note that the difference in work functions in the case of Fig. 10.5b is such that the
semiconductor surface region is effectively less p-type than the rest of the body, i.e., it
has assumed a more n-type character. This phenomenon is known as inversion. As the
intention is to create a high density of electrons at the surface, it follows that this will be
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Figure 10.5 Band diagrams for the electron-energy variation in the y-direction for the MOS
capacitor in Fig. 10.4. For the gate, EFG is taken to be coincident with the conduction-band edge,
as would be the case for n+ polysilicon. (a) The separated components. (b) The completed band
diagram at equilibrium. χox is the electron affinity of the oxide, �G and �S are the work
functions of the gate and the semiconductor, respectively.

achieved at a lower positive applied gate/body voltage than would be the case if there were
no band-bending at equilibrium, i.e., if Vbi were zero. The no-band-bending condition is
called the flat-band condition; it can be achieved in our example by applying a negative
potential to the gate (see Fig. 10.6a). Evidently, V f b = −Vbi . The electron concentration
(per unit volume) in the semiconductor is given by

n(y) = ni e
(EF B−EFi (y))/kT ≡ ni e

(ψ(y)−φB )/Vth . (10.4)

Deep in the body of the device we have

n(B) = ni e
−φB/Vth = n2

i

NA
, (10.5)

where a uniform doping density of acceptors has been assumed and φB is defined as

φB = 1

q
[EFi (B) − EF B] . (10.6)

These equations can be used to express n in terms of NA:

n(y) = NAe(ψ(y)−2φB )/Vth , (10.7)

where ψs ≡ ψ(0) is the potential at the semiconductor surface. Evidently, when ψs

equals 2φB , then n(0) = NA. This condition which is illustrated in Fig. 10.6b, is defined
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Figure 10.6 (a) Energy-band diagram at flatband: VG B = V f b ≡ −Vbi . (b) Energy-band diagram
at the onset of strong inversion: ψs = 2φB, VG B = V T

G B .

as the onset of strong inversion in the surface channel of a MOS capacitor. The electron
charge per unit area is given by

Qn =
∫ W

0
−qn(y) dy , (10.8)

where W is the depth of the space-charge layer that extends from the surface into the
body.

10.2.2 MOSFET

Now let us consider the effect of contacting the inversion layer via the drain and source
regions, between which we apply a voltage VDS . This voltage is dropped along the
channel and is the driving force for electron flow from the source to the drain. To
recognize the non-equilibrium nature of the situation now that charge flow is permissible,
a separate electron quasi-Fermi level EFn is introduced (see Fig. 10.7). The difference
in quasi-Fermi levels for electrons at the surface and for holes deep in the body defines
the channel/body voltage VC B :

− qVC B(x) = EFn(x) − EF B . (10.9)

The presence of a positive VC B reduces the field in the oxide, and increases the
potential drop across the depletion layer, as shown in Fig. 10.7. The effect of the
former is to reduce the charge on the gate QG ; and the effect of the latter is to make
the body charge Qb more negative. Overall charge neutrality demands, therefore, that
the channel charge Qn becomes more positive. Thus, with reference to the two band
diagrams in Fig. 10.7, the reduction in channel charge in (b) means that the applied
gate/body voltage is no longer sufficient to put the channel in inversion at the point x
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Figure 10.7 Energy-band diagrams in the y-direction, showing the effect of a channel voltage VC B

arising from the application of a drain-source voltage. (a) The threshold condition with VDS = 0.
(b) With VDS > 0 and VG B unchanged.

under consideration. As x → 0, i.e., as the source end of the channel is approached, the
effect diminishes. Thus, the electron concentration is a function of x and y, and (10.7)
becomes

n(x, y) = NAe[ψ(x,y)−2φB−VC B (x)]/Vth . (10.10)

If we can determine n(x, y), then the drain current should easily follow, using the Drift-
Diffusion Equation, for example. The following Sections 10.3 and 10.4 describe two
approaches to achieve this goal.

10.3 MOSFET I-V characteristics from the surface-potential model

10.3.1 Surface potential

The MOSFET we are considering is assumed to be invariant in the z-direction, so
Poisson’s Equation for the body and channel regions is, neglecting hole charge in the
body’s space-charge region,

∂2ψ

∂x2
+ ∂2ψ

∂y2
= q NA

εs

[
1 + e(ψ−2φB−VC B )/Vth

]
. (10.11)

The controlling field for the charge in a well-designed FET is Ey . Recognizing this, and
simultaneously allowing a tractable solution to (10.11), we make the Gradual Channel
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Approximation:

∂2ψ

∂x2
� ∂2ψ

∂y2
. (10.12)

To solve (10.11), multiply both sides of it by ( ∂ψ

∂y )∂y and then integrate from deep in the
body, where ψ = 0 (assuming VB , the potential applied to the body terminal, is zero)
and ∂ψ/∂y = 0, to the surface, where ψ = ψs and ∂ψ/∂y = Ey(0). The last limit is the
field in the semiconductor at the oxide/semiconductor interface. Using this and Gauss’s
Law (Ey(0) = −Qs/εs), we can then get an expression for the charge per unit area in
the semiconductor:

Qs = −
√

2qεs NA

√
ψs + kB T

q

[
eψs/Vth − 1

]
e−(2φB+VC B )/Vth , (10.13)

where Qs is a function of x through ψs(x). As we are working towards an expression
for the terminal characteristics of the device, we need to bring in the applied voltages.
For VG B we can do this by realizing from Fig. 10.5 and Fig. 10.6 that

VG B − V f b = ψox (x) + ψs(x) , (10.14)

and by applying Gauss’s Law once more to obtain

Qs(x) = −QG(x) = −Coxψox = −Cox

[
VG B − V f b − ψs(x)

]
, (10.15)

where QG is the charge per unit area on the gate electrode.
(10.13) and (10.15) provide an implicit relation between ψs and VG B :

ψs = VG B − V f b − γ

√
ψs + kB T

q

[
eψs/Vth − 1

]
e−(2φB+VC B )/Vth , (10.16)

where γ = √
2qεs NA/Cox is called the body factor.4 The x-dependence of ψs enters

through the channel/body voltage VC B(x).
Before examining how ψs changes with VG B , let us use the surface potential to define

the state of inversion in the channel of the MOSFET. Here, we take inversion to mean
the presence of electrons at the surface, as is required for there to be a drain current.

A point x in the channel is in weak inversion when

0 < ψs(x) < φB + VC B(x) ; (10.17)

a point x in the channel is in moderate inversion when

φB + VC B(x) < ψs(x) < 2φB + VC B(x) ; (10.18)

a point x in the channel is in strong inversion when

2φB + VC B(x) < ψs(x) . (10.19)

4 The name refers to the fact that the term
√

2εs NA comes from consideration of the charge in the body.
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Figure 10.8 Surface potential vs. VG B for a CMOS90 N-FET with parameters listed in
Appendix C.

Thus, at the onset of moderate inversion n(x, 0) = ni , and at the onset of strong
inversion n(x, 0) = NA. These important markers are shown in Fig. 10.8, which is a
plot of ψs vs. VG B at the two ends of the channel: ψs(y) = ψs(0) at the source end and
ψs(L) at the drain end. A drain-source voltage is applied, i.e., VSB = 0 and VDB > 0.

Note that, for this particular example, V f b is sufficiently negative that the source is
in moderate inversion even at VG B = 0. As VG B increases, ψs follows with a linear
correspondence. This is the situation described in Section 10.1 when Qs is so small
that Cs � Cox , and the capacitor-divider action allows ψs to track VG B almost perfectly.
When ψs at the source end rises to 2φB , the electron concentration per unit volume
reaches NA at the surface, and the strong-inversion region is entered. Shortly after this,
the charge per unit area in the semiconductor (Qn + Qb) is sufficiently large (negatively)
that Cs becomes comparable to Cox . As the surface concentration of electrons increases
exponentially with ψs (due to injection across the source/body np-junction), it is not
long before Cs becomes much larger than Cox , leading to near-saturation of ψs(0).
Electrostatically, the near-saturation of ψs(0) occurs because the body becomes shielded,
or screened, from the gate by the large negative charge Qn in the channel, i.e., field lines
from any new charge on the gate, due to any increase in VG B , terminate almost entirely
on the electron charge in the channel. Thus, there is barely any further change in the
depletion layer at the source-end of the channel.

Turning now to the drain-end of the channel, Fig. 10.8 shows the situation for two
values of VDS . When VDS = 0.25 V, it can be seen clearly that strong inversion at the
drain is not reached until ψs(L) > 2φB + VDS , i.e., until the effect of VC B(L) = VDS

has been overcome by VG B . The drain-induced potential on the channel reduces the
y-directed field in the oxide, and consequently requires that less negative charge be
present in the channel. It follows that strong inversion can only be re-established by
increasing VG B . Note that, in our particular example, at VDS = 1 V, if VG B is limited to
1 V also, then strong inversion will not be achieved at the drain end of the channel!
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10.3.2 Drain current

The charge per unit area in the semiconductor comprises electrons near the surface Qn ,
and ionized acceptors in the depleted region of the body Qb:

Qs(x) = Qn(x) + Qb(x) . (10.20)

To proceed towards finding the current we need to know Qn , the density per unit area of
the mobile charge. To do this we make the Charge Sheet Approximation, i.e., we assume
that all the electrons reside in a sheet at the semiconductor surface. The benefit of this is
that there would be no voltage drop through such a sheet in the y-direction, so the voltage
ψs − VB , where VB is the potential applied to the body terminal, is dropped entirely
across the space-charge region of ionized acceptors. Further, if we make the Depletion
Approximation for this region, i.e., neglect the charge due to holes, then Qb is simply

Qb(x) = −q NAW (x) = −
√

2εsq NAψs(x) , (10.21)

where W (x) is the depletion-region width. The charge density per unit area in the
channel then follows from (10.15) and (10.20):

Qn(x) = −Cox

[
VG B − V f b − ψs(x) − γ

√
ψs(x)

]
. (10.22)

The electron current density in a 2-D sheet, using the Drift-Diffusion Equation is

�Je = Qn �vd − De
d Qn

dx
, (10.23)

and the electron current is

Ie = Z Qnµe
dψs

dx
− Z

kB T

q
µe

d Qn

dx
, (10.24)

where Z is the width of the transistor, as noted in Fig. 10.1, and we have invoked the
non-degenerate form of the Einstein Relation. The flow of electrons in our case is in
the positive x-direction inside the device, so the current at the drain is positive, by IEEE
convention.5 Thus∫ L

0
ID dx ≡ −

∫ L

0
Ie dx = −Z

∫ ψs (L)

ψs (0)
µe Qn dψs + Z

kB T

q

∫ Qn (L)

Qn (0)
µe d Qn .

(10.25)
Because we have assumed that there is no hole conduction, and that there is current

leakage neither to the gate nor to the substrate, Ie is constant throughout the device.
Thus, the left-hand side of the above equation is simply ID L . On the right-hand side,
we recognize that the mobility will be affected by the y-directed electric field, causing
scattering at the semiconductor surface where it meets the oxide. Because of this, we
call the mobility in the channel the effective mobility, and expect it to be less than
the mobility in the bulk of a material with near-perfect crystallinity. At this stage of
our model development, we also assume that µeff does not depend upon the x-directed

5 This convention defines a device current as positive when positive charge enters a terminal of the device.
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Figure 10.9 MOSFET gate characteristic from the surface potential model. Model parameters as
given in Appendix C for a CMOS90 N-FET.

electric field, so the drain current can be expressed as

ID = Z

L
µeff

[∫ ψs (L)

ψs (0)
−Qn dψs + kB T

q

∫ Qn (L)

Qn (0)
d Qn

]
. (10.26)

To perform the first integration, use the dependence of Qn on ψs from (10.22). The
second integration is trivial, and, after doing it, substitute for Qn(0) and Qn(L) from
(10.22). Both the drift and diffusion currents now become functions of ψs at the two
ends of the channel:

ID,drift = Z

L
µeff Cox

[
(VG B − V f b)(ψs(L) − ψs(0))

−1

2
(ψs(L)2 − ψs(0)2) − 2

3
γ
(
ψs(L)3/2 − ψs(0)3/2

)]

ID,diff = Z

L
µeff Cox

kB T

q

[
(ψs(L) − ψs(0)) + γ

(
ψs(L)1/2 − ψs(0)1/2

)]
, (10.27)

where ψs(L) and ψs(0) are obtained from (10.16), with VC B = VDB and VSB , respec-
tively.

Note how each current component would merely change sign if ψs(L) and ψs(0) were
reversed. This symmetry is to be expected because of the geometrical symmetry of the
FET.

Examples of the current from this model are shown in Fig. 10.9 for the case of varying
VG B , which produces the gate characteristic, and in Fig. 10.10 for the case of varying
VDB , which produces the drain characteristic. The gate characteristic is like the one
shown in Fig. 10.2. The initial exponential form of the curve, and then the ‘flattening
out’, were explained in Section 10.1. The new information in Fig. 10.9 is the dominance
of the diffusion current in the ‘exponential’ regime, and the dominance of drift at higher
VG B . Drift gains importance over diffusion as the field Ey strengthens with VG B , and
makes for a more uniform electron distribution along the channel, i.e., in the x-direction.
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Figure 10.10 MOSFET drain characteristic from the surface potential model. Note: VSB = 0, so
that VGS ≡ VG B and VDS ≡ VDB . Model parameters as given in Appendix C for a CMOS90
N-FET.

The drain characteristic is shown on a linear-linear plot for three values of VGS

corresponding to the non-exponential part of the gate characteristic. Initially, the ID −
VDS relation is essentially linear: VC B is small everywhere, the channel is in strong
inversion along its entire length, Qn does not vary much with x . In other words, the
channel behaves like a resistor. As VDB increases, strong inversion is lost progressively
towards the drain, until the drain-end becomes moderately or weakly inverted (see
Fig. 10.8). Under these conditions, Qn near x = L is so small that the field due to
the gate potential terminates almost entirely on the ionic charge in the body, i.e., VC B

in this region no longer affects the surface potential. Thus, the latter becomes solely
determined by VG B . This region of strong correlation between ψs and VG B is evident
in the near-linear portion of Fig. 10.8. An estimate of the relation can be obtained by
setting Qn = 0 in (10.22)

ψ(L) ≡ ψs(Qn = 0) =
[
−γ

2
+
√

γ 2

4
+ VG B − V f b

]2

≈ VG B − V f b , (10.28)

where the approximate form applies if (VG B − V f b) � γ 2/4. Under these circum-
stances, the overall potential drop along the channel in the x-direction reaches its
maximum value, i.e., ψs(L) − ψs(0) ≈ VG B − V f b − 2φB − VSB , assuming that the
source-end of the channel is in strong inversion. Thus, the driving force for the drain
current reaches its maximum value and, consequently, ID saturates. To put it another
way, the drain is ‘sinking’ all the charge that the source can supply for a given VG B .6

6 This behaviour is characteristic of a long-channel device. In Chapter 13 we consider short-channel devices
in which L is so small that VDB also affects ψs (0); this influences ID and is undesirable because it is the
drain’s job merely to sink the charge, not to control its flow: that is the gate’s job.
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10.3.3 Pinch-off and channel-length modulation

Two cautions are issued about the above description of saturation of ID .
Firstly, note that Qn can never equal zero if current is to be maintained, because

some electrons are needed to carry the charge. The condition for saturation of ID is not
really Qn(L) = 0, but rather |Qn(L)| � |Qb(L)|. Thus, the channel never pinches off
completely.

Secondly, as VDB increases beyond the value at which |Qn(L)| � |Qb(L)|, then the
condition |Qn(x)| � |Qb(x)| occurs at x values closer to the source. This is as though the
effective channel length of the device were decreasing. This has the effect of increasing
the drain current; the phenomenon is known as channel-length modulation. In modern
devices, e.g., in which L ≤ 100 nm, the effect is masked by the short-channel effect,
which we will discuss at length in Chapter 13.

10.4 MOSFET I-V characteristics from the strong-inversion,
source-referenced model

The next MOSFET model to be described is used in SPICE, and is the one that is
most frequently featured in textbooks. It is not as accurate as the surface-potential
model, nor does it preserve the symmetry of the FET’s characteristics, nor does it
provide a single expression that describes the drain current in all regimes of operation.
However, it is completely analytical in nature, and yields useful equations for circuit-
simulation purposes. However, as noted earlier, the surface-potential model has recently
been adopted by CMC as the industry standard.7 The computational burden of the
surface-potential model has been lessened by the advent of faster computers, and any
disadvantage it still has in this regard is considered by some to be outweighed by its
greater accuracy. In this section we derive the strong-inversion, source-referenced model
as a rather gross simplification of the surface-potential model. We also use it to introduce
the effect of a field-dependent mobility on the drain current.

10.4.1 Basic assumptions of the model

The model has ‘strong inversion’ in its title because it assumes that the surface potential
is everywhere at its strong-inversion value, i.e.,

ψs(x) = 2φB + VC B(x) . (10.29)

Obviously, this assumption is going to cause the model to breakdown at high VDS , when
we have already seen that strong inversion is lost at the drain.

The model has ‘source-referenced’ in its title because it refers all potentials to the
source, rather than to the body, e.g.,

VC S(x) = VC B(x) − VSB . (10.30)

7 Compact Model Council, http://www.geia.org/index.asp?bid=597
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This change in reference causes the source/drain symmetry of the device to be lost, but
it opens the way for the introduction of a very useful parameter, the threshold voltage.

The second assumption of the model is that

VC S � 2φB + VSB . (10.31)

This just reinforces the notion of strong inversion everywhere in the channel, i.e., the
potential in the channel should not be disturbed too much from its strong-inversion value
at the source by the application of a voltage VDS .

10.4.2 Drain current for constant mobility

The surface-potential model indicates that the drain current is mainly due to drift when
the source is in strong inversion. Accordingly, we start by taking the drift portion of the
expression for ID from the surface-potential model (10.27). This expression contains the
surface potentials at the source- and at the drain-ends of the channel. The implication of
the first assumption of the model is that

ψs(0) = 2φB + VSB

ψs(L) = 2φB + VDB

ψs(L) − ψs(0) = VDS

ψs(L) = 2φB + VSB + VDS . (10.32)

The implication of the second assumption of the model is that

VDS � 2φB + VSB . (10.33)

We make use of this inequality to perform a binomial expansion to the second order of
the term ψ3/2

s in the drift current part of (10.27). The result is a compact expression for
the drain current:

ID = ZCox

[
VGS − VT − m

VDS

2

]
. µeff

VDS

L
, (10.34)

where various terms have been collected together to define two useful parameters: the
threshold voltage

VT = V f b + 2φB + γ
√

2φB + VSB , (10.35)

and the body-effect coefficient

m = 1 + γ

2
√

2φB + VSB
. (10.36)

Note that the expression for the threshold voltage contains no reference to the channel
length L , nor to the drain/source bias VDS , i.e., these properties do not influence condi-
tions at the source. For this reason, (10.35) is appropriate for FETs that exhibit so-called
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Figure 10.11 Drain characteristic: comparison of SPICE Level 1 model and the PSP model. Model
parameters as given in Appendix C for a CMOS90 N-FET at VGS = 1 V.

‘long-channel’ behaviour. ‘Short-channel’ effects on the threshold voltage are discussed
in Chapter 13.

We’ll return to these model parameters later, but now let us focus on Fig. 10.11, in
which (10.34) is plotted. Note that for low VDS , when VDS � 2(VGS − VT )/m, then
(10.34) reduces to the linear relationship of a resistor. At higher VDS the current starts
to decrease! This strange behaviour is indicative of the breakdown of the model, and,
as could have been anticipated from our earlier discussion, this occurs when strong
inversion is lost at the drain. In fact, the value of VDS at which the model breaks down
can be determined from Fig. 10.8. Note from this figure that, for a supply voltage of 1 V,
the maximum value of ψs(L) is about 1.58 V. As 2φB = 0.95 V in our example, strong
inversion is lost at the drain when VDS = 0.63 V. In other words, ψs in Fig. 10.8 would
start to flatten-out at VG B = 1 V when VDS = 0.63 V. This is the voltage at which the
drain current in Fig. 10.11 reaches its peak.

The way that the model copes with its deficiency is to assume that ID stays constant at
the value at the top of the curve. Differentiation of (10.34) with respect to VDS indicates
that the maximum in current occurs at

VDS ≡ VDSsat = VGS − VT

m
, (10.37)

i.e., at VDS = 0.63 V in our example. VDSsat is the saturation voltage. Substituting
VDSsat into (10.34) gives an expression for the saturation current

IDsat = Z

L
Coxµeff

(VGS − VT )2

2m
. (10.38)
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Figure 10.12 Drain characteristic: comparison of the PSP model (dashed line) with the SPICE
Level 1 model, for both the case of ψs(0) = 2φB and for the case of ψs(0) increased above this
value by 5Vth. Model parameters as given in Appendix C for a CMOS90 N-FET at VGS = 1 V.

This constant-mobility model is often referred to as the square-law model. This equation
for the saturation current and (10.34) for the below-saturation region constitute the Level
1 model in SPICE.

10.4.3 Comparison of the surface-potential and SPICE models

The drain characteristics for the two models are compared in Fig. 10.12. It can be seen,
and also from Fig. 10.11, that the agreement is not very good. This leads us to call
into question the validity of the first assumption (10.29). Consider the source-end of
the channel, for example. The assumption there is that ψs(0) = 2φB + VSB at the onset
of strong inversion. Fig. 10.8 shows that this is, indeed, the value at which ψs starts
to increase less strongly with VG B , but it is clearly not the value at which ψs becomes
relatively flat, indicating the screening of the body from the gate voltage by the large
charge density in the channel. This does not happen until about 0.1 V later, i.e., until the
volumetric charge density of electrons at the surface has become much greater than NA.
This observation was made many years ago [7], but seems to have been largely ignored.
Tsividis suggested that the surface potential at strong inversion should be raised by about
6Vth. Here, in Fig. 10.12, we find that augmenting 2φB by 5Vth, brings the SPICE model
into much better agreement with the surface-potential model.

10.4.4 Threshold voltage, body-effect coefficient and channel charge density

We now discuss the threshold voltage and the body-effect coefficient, first introduced in
Section 10.4.2, and relate them to the charge density in the channel Qn .
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Figure 10.13 Illustration of the body effect at the drain end of the channel. The application of
VDS > 0 in (b) changes the charge distributions from their values at VDS = 0, as shown in (a).
m(L) ≡ |�Qn(L)/�QG(L)| = 2 in this case.

The surface-potential model expresses Qn in (10.22), where the term
√

ψs appears.
Applying the second assumption of the SPICE model to this term and expanding it to
first-order, the result is

Qn(x) = −Cox

[
VGS − V f b − 2φB − γ

√
2φB + VSB

−VC S(x)

{
1 + γ

2
√

2φB + VSB

}]
, (10.39)

where VG has been referenced to the source, using VGS = VG B − VSB . This equation
can then be written compactly as

Qn(x) = −Cox [VGS − VT − mVC S(x)] . (10.40)

At the source-end of the channel

Qn(0) = −Cox [VGS − VT ] . (10.41)

This leads to the useful interpretation of the threshold voltage as the gate/source voltage at
which the channel becomes strongly inverted at the source-end. In light of the discussion
at the end of the previous subsection, VT would be even more useful if the occurrences
of 2φB in its expression (10.35) were augmented by 5Vth.

Turning now to the body-effect coefficient m, recall that it entered into the strong-
inversion model during the expansion of the term involving ψs(0)3/2 and ψs(L)3/2

in the equation for the drift current in the PSP model (10.27). Its appearance in the
strong-inversion model is an attempt to include in this model the effect of the body in
contributing to the reduction in channel charge Qn when VDS is increased. To appreciate
this, consider Fig. 10.13. The left-hand sketch illustrates conditions at the drain end of
a FET with VDS = 0, and with the channel in strong inversion everywhere. The portion
of the gate that is shown has 4 positive charges; these are complemented by 2 negative
charges in the channel and 2 negative charges in the body. The right-hand sketch shows
the charge distribution after application of some VDS > 0. The positive potential on the
drain has removed the electrons from the drain-end of the channel: one electron flowed
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around the drain/body circuit and ionized another acceptor; the other flowed around the
drain/gate circuit and annihilated one positive charge on the gate.

In a two-terminal structure, such as a parallel-plate capacitor, there is a one-to-one
correspondence between the change in charges on the two plates, which would be
represented by Qn and QG in this case. However, as Fig. 10.13b illustrates, the presence
of a third region, the body, causes |Qn| > QG , i.e., a loss of channel charge in excess
of the corresponding loss of gate charge. This adversely impacts the drain current, and
warrants the inclusion of m in the expressions for ID in the strong-inversion model.8

Mathematically, considering a change in VDS that changes the channel/source voltage
from 0 to VC S(x) at some point x in the region shown in Fig. 10.13b, the changes in
charge are

�QG(x) = Cox�ψox (x) = −Cox VC S(x)

�Qb(x) = �(Cb(x)VC B(x)) ≈ −Cb(x)VC S(x)

�Qn(x) = −�QG − �Qb = (Cox + Cb(x))VC S(x)

≡ Cox m(x) VC S(x) , (10.42)

where an alternative to (10.36) for the definition of m has emerged:9

m(x) = 1 + Cb(x)

Cox
. (10.43)

The ‘bottom line’ here is that m(x) is the ratio of the change in charge in the channel
to the change in charge on the gate:

m(x) =
∣∣∣∣�Qn(x)

�QG(x)

∣∣∣∣ . (10.44)

Generally, m(x) > 1 because some of �Qn goes to change the charge in the body, e.g.,
m(L) = 2 in Fig. 10.13. In practice, m is closer to 1 than to 2.

10.4.5 ID when mobility is field-dependent

We now remove one of our earlier assumptions by allowing for the dependence of the
effective mobility on the longitudinal field in the channel Ex . The relationship between
the drift velocity and Ex is shown in Fig. 5.2, and can be expressed as

1

vd
= 1

µeff |Ex | + 1

vsat
. (10.45)

The drift current can be simply written as the charge times the drift velocity

ID = ZCox [VGS − VT − mVC S(x)] . vd (x). (10.46)

8 Note that m is not explicit in the PSP model because that model takes into account the effect of VDS on Qn

via its more exact treatment of the surface potential.
9 It is left as an exercise for the reader to show that the two expressions for m are equivalent. See Exercise

10.3.



P1: Trim: 174mm × 247mm Top: 0.498in Gutter: 0.664in

pulfrey_cup cuuk824/Pulfrey 978 0 521 51460 6 December 25, 2009 21:51

188 10 MOSFET basics

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
x 10

−3

V
DS

  (V)

I D
  (

A
 µ

m
−1

)

   LEVEL 1
__  LEVEL 49

L = 100 nm

L = 1000 nm

Figure 10.14 Comparison of the SPICE Level 1 and Level 49 models. The device parameters other
than the gate length, which is the parameter here, are listed in Appendix C for a CMOS90 N-FET
at VGS = 1 V.

Substituting for vd , and using |Ex | = dVC S(x)/dx , integration of (10.46) gives

ID = ZCox

[
VGS − VT − m

VDS

2

]
. µeff

VDS

L + (µeff VDS/vsat)
. (10.47)

As in (10.34), the charge appears as if it is evaluated where VC S = VDS/2, but the
velocity is modified. Clearly, if vsat were infinite, the two equations would be the same.

This equation also exhibits a maximum value when the basic assumption of strong
inversion breaks down at the drain-end of the channel (see Exercise 10.6). As in the
constant-mobility case, the maximum value of ID can be taken as the value for the drain
saturation current. This new value of IDsat is

IDsat = ZCox (VGS − VT ) . vsat

√
1 + 2µeff (VGS − VT )/(mvsatL) − 1√
1 + 2µeff (VGS − VT )/(mvsatL) + 1

. (10.48)

With respect to IDsat for the Level 1 model, it can be seen that the charge is still evaluated
at x = 0, but the velocity is now limited to a maximum value of vsat. The corresponding
new expression for the drain saturation voltage is

VDSsat = 2(VGS − VT )/m√
1 + 2µeff (VGS − VT )/(mvsatL) + 1

. (10.49)

The set of equations, (10.47), (10.48) and (10.49), constitute the Level 49 model in
SPICE.

The two models, Level 1 and Level 49, are compared in Fig. 10.14 for two MOSFETs,
which differ only in their channel length: 1000 nm vs. 100 nm. The models agree well
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in the linear region, where both reduce to (10.50)

ID = ZCox (VGS − VT ) . µeff
VDS

L
. (10.50)

In the saturation regime there is good agreement in the long-channel case, but very poor
agreement in the shorter-channel case. The disagreement is due to the fact that the Level
1 model uses a linear relationship between velocity and field (v = µeffEx ). This means
that at the high values of Ex that can arise in the channel of a short-length device, vd can
exceed vsat, which is the limiting velocity imposed by Level 49.

10.5 Sub-threshold current

In the sub-threshold regime of operation, VGS < VT and the channel is everywhere in
weak or moderate inversion. The aim of this section is to link the sub-threshold current to
the threshold voltage and to VGS . The resulting expression is used in Chapter 13 to exam-
ine two important properties of transistors intended for high-speed logic applications:
the ratio of the onset of the ON-current to the OFF-current, and the inverse sub-threshold
slope. From (10.13), (10.20) and (10.21) we have

Qn = −
√

2qεs NA

[√
ψs + kB T

q
e(ψs−2φB−VC B )/Vth −

√
ψs

]
. (10.51)

In moderate inversion ψs < (2φB + VC B), so the first square-root term in the square
brackets can be expanded using the binomial theorem. Keeping terms to first-order
yields

Qn = −
√

2qεs NA

2
√

ψs

kB T

q
e(ψs−2φB−VC B )/Vth . (10.52)

In our discussion of the body-effect coefficient we emphasized that, in weak inversion,
the surface potential is barely influenced by VC B . This means that there is essentially no
field Ex , so that the drain current is due to diffusion. Therefore, taking the diffusive part
of (10.27), and substituting (10.52), with Qn(0) evaluated at VC B = VSB , and Qn(L) at
VC B = VDB gives

ID = Z

L
µeff

(
kB T

q

)2 √
2qεs NA

2
√

ψs
e(ψs−2φB )/Vth e−VSB/Vth

{
1 − e−VDS/Vth

}
. (10.53)

Because the dominant effect of ψs on the current occurs via the exponential term in the
numerator, no great loss of accuracy would result from choosing some constant value
for

√
ψs in the denominator. Here, we choose the value at the extreme end of the weak-

inversion regime (=2φB + VSB), because this then allows the term
√

2qεs NA/(2
√

ψs)
to be written succinctly as Cox (m − 1). To bring in the threshold voltage, consider the
linear portion of Fig. 10.8, which shows the gate-bias dependence of ψs for a particular
VSB . Identify a particular surface potential ψ ′

s with a particular gate-source voltage V ′
GS ,

with it being understood that VGS < VT in this weak-inversion condition; and identify
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Figure 10.15 Sub-threshold current comparison: (SPICE Level 49 vs. PSP). Model parameters as
given in Appendix C for a CMOS90 N-FET.

the surface potential 2φB + VSB with VT . In sub-threshold |Qn| � |Qb|, so from (10.43)
for the body-effect coefficient and (10.1) for the potential-divider action of the oxide
and body capacitances, we have

dψs

dVGS
= 1

m
= 2φB + VSB − ψ ′

s

VT − V ′
GS

. (10.54)

Putting this into (10.53) and dropping the prime symbol gives the desired form for the
sub-threshold current

ID = Z

L
µeff

(
kB T

q

)2

Cox (m − 1) e(VGS−VT )/mVth
{

1 − e−VDS/Vth
}

. (10.55)

This expression brings out the exponential dependence of ID on VGS in the sub-threshold
region. This relationship is evident in Fig. 10.2, and also in Fig. 10.15. The latter
compares the result from (10.55) with the result from the surface-potential model (10.27):
evidently the two equations give excellent agreement.

10.6 Applying the long-channel models

The models presented in this chapter are appropriate for use with MOSFETs in which
long-channel behaviour applies. This does not mean that the transistor is necessarily
physically long: it means that the charge and potential at the source end of the channel,
from which the current issues, are not influenced by conditions at the drain, i.e., by the
drain potential VD .
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Figure 10.16 MOSFET DC equivalent circuit.

The charge at the source end of the channel in the strong-inversion, source-referenced
model is

Qn(0) = −Cox (VGS − VT ) , (10.56)

where the threshold voltage is given by (10.35), and is independent of VDS . In the
surface-potential method, the surface potential at the source-end of the channel is given
by (10.16)

ψs(0) = VG B − V f b − γ

√
ψs(0) + kB T

q

[
exp

(
ψs(0)

Vth

)
− 1

]
exp

−(2φB + VSB)

Vth
,

(10.57)

which is independent of VDB .
These equations, and the models from which they are derived, emphasize the control

of the critical source conditions by the gate potential VG . In FETs with physically short
channels, the proximity of the drain to the source leads to the possibility of some of
this control being surrendered to VD . This is undesirable because the threshold voltage,
for example, would not then be determined solely by pre-designed physical properties:
it would become bias dependent, i.e., it would depend on the operating conditions.
To maintain gate control of the channel in FETs that are physically short is one of
the challenges faced by designers of modern Si FETs, for which the channel length
is <50 nm. The structural and physical changes to FETs that have been introduced to
maintain long-channel behaviour in physically short devices are discussed in Chapter 13.
The success that has been achieved in this regard means that the models of this chapter,
with some modifications, can still be applied to truly short-channel FETs.

10.7 DC equivalent-circuit model

The DC equivalent circuit for a MOSFET is very simple if the possibilities of charge
flow from the channel to the gate and to the substrate are ignored. These are usu-
ally good assumptions to make because the gate oxide, even though it is very thin,
is a good insulator, and because the source/substrate n+/p barrier is much higher
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than the source/channel n+/n barrier, i.e., the source-to-substrate current path, and the
source-to-drain current path through the substrate, are both shorted out when there is
an inversion layer present. Thus, the equivalent circuit for the ON condition can be rep-
resented as a voltage-controlled current generator (see Fig. 10.16), with the particular
ID(VGS, VDS, VBS) relationship being given by whichever of the expressions for ID and
IDsat given in this chapter is appropriate.

Exercises

10.1 A process engineer incorrectly sets the flow rate of phosphorus that is used
to dope the poly-silicon gates of N-MOSFETs. Instead of the usual very high
doping, the gates are only doped at 1 × 1017 cm−3.

By how much does this change the threshold voltage of the transistors?
10.2 One of the major assumptions in deriving the ‘strong-inversion, source-

referenced’ models from the ‘surface-potential’ model is that

VC S(x) � (2φB + VSB) . (10.58)

Justify the making of this assumption for CMOS90 N-MOSFETs.
10.3 Show that (10.36) for the body-effect coefficient m is equivalent to the definition

for m(x) in (10.43), when the latter is evaluated at the source end of the channel.
10.4 Compute the magnitude of the body-effect coefficient for the CMOS90 process.
10.5 Perform the derivation of (10.47) for ID following the procedure stated in the

text.
10.6 Show that the reason why the Level 49 model breaks down is because it predicts

E(x) → ∞ at VC S(L) = VDSsat .
10.7 A widely used expression for the saturation voltage in long transistors is

VDSsat = (VGS − VT )/m.
At what gate length does this expression start to become inaccurate?

10.8 A certain semiconductor material has an energy band structure in which the
curvature around the extrema is greater for the valence band than it is for the
conduction band.

If MOSFETs of a given channel-length L were made from this semiconducting
material to supply a given current at a given overdrive voltage (VGS − VT ), which
type of FET (n-channel or p-channel) would have the smaller footprint?

10.9 (a) Employ the ‘long-channel’ threshold voltage expression (10.35) to eval-
uate the threshold voltage for N-FETs from the CMOS90 and CMOS65
technologies.

(b) Of all the parameters that were changed in going from the 90-nm technology
node to the 65-nm technology node, which is the one most responsible for
the large difference in long-channel VT ?

10.10 (a) For an N-FET with the CMOS90 parameters listed in Appendix C, obtain a
log10 ID-VGS plot for the sub-threshold regime, with VDS = 1.0 V.
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(b) Add to the plot from (a) the corresponding data for an N-FET from the
CMOS65 process.

(c) If the 65-nm technology was designed to give the same OFF current as for
CMOS90 devices, what is the threshold-voltage shift in 65-nm FETs due
to short-channel effects? Assume that there are no short-channel effects in
CMOS90.

(d) Imagine that the microprocessor in your laptop computer uses CMOS90
FETs. Estimate the temperature of the CPU chip and add the appropriate
curve to your sub-threshold plot.

Is the temperature rise desirable?
10.11 In the previous two questions the trend for the ‘long-channel threshold voltage’ to

increase as devices scale down was noted. The reason for this is to accommodate
the reduction in actual threshold voltage due to increasing short-channel effects.

The parameters for CMOS45 are not yet well known, but one might expect
a thicker high-k dielectric for the gate oxide, e.g., εr = 16 and tox = 8 nm, a
metal gate, and perhaps a slightly reduced doping density in the body, e.g.,
1 × 1018 cm−3.

If the target value for the long-channel VT is 0.45 V, what must be the work-
function of the metal gate?

10.12 From Question 10.10 it can be taken that real N-FETs in the CMOS90 and
CMOS65 technologies have the same OFF current. If performance can be evalu-
ated as the ratio of maximum ON current (IDsat ) to OFF current, did the change
from CMOS90 to CMOS65 follow Moore’s Law?

10.13 Evaluate the saturation current if ballistic transport were to occur in the channel
of an N-FET. Explain your choice of electron effective mass.

If you were R&D Manager of a large semiconductor company, would the
margin between the values of IDsat for dissipative and ballistic transport lead
you to try to develop ballistic Si MOSFETs?

10.14 By transferring a large amount of charge to the gate of a FET it is possible to
cause the gate oxide to break down. This is why engineers wear a well-grounded
wrist band when testing FETs.

If an engineer neglected to wear a ground band, and tested FETs from the
following two batches, which FETs would be more likely to be destroyed?

Batch A: L = Z = 200 nm and tox = 40 nm;
Batch B: L = Z = 2000 nm and tox = 4 nm.
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Originally, the most significant difference between a MOSFET and a BJT was the
high input impedance afforded by the gate insulation of the FET. The high quality
of the SiO2/Si system in Si MOSFETs has not proved possible to replicate in other
semiconductor systems, particularly those involving III-V compound semiconductors.
Therefore, to capitalize on the advantages that the latter semiconductors may have
over silicon, such as mobility (see Fig. 11.1), and still realize a FET device, some
other way of implementing the field-effect is necessary. This has been done by using a
metal/semiconductor junction, rather than a metal/insulator/semiconductor combination,
to create a vertical field to control the charge in the channel. The two main devices that
exploit this are shown in Fig. 11.2: the MESFET (metal-semiconductor FET), and the
HEMT (high-electron-mobility transistor). The latter device is also sometimes called
a MODFET, where MOD refers to modulation doping, and relates to the fact that
the doping in the top barrier layer plays a key role in controlling (modulating) the
channel charge. All these transistors are HJFETs (heterojunction FETs) on account of
the presence of a metal/semiconductor heterojunction in their structures.

The use of high-mobility semiconductors in MESFETs and HEMTs enables attain-
ment of a high transconductance, which is a prerequisite for good high-frequency per-
fomance (see Section 14.4). The mobility is further enhanced in a HEMT by reducing
the doping density in the barrier layer proximal to the channel, and by exploiting the
two-dimensional nature of the channel. Quantum-mechanical effects due to the confine-
ment of electrons in the channel not only improve the mobility, but also lead to improved
noise characteristics, as explained in Chapter 17.

11.1 Schottky barrier

Metal/semiconductor junctions that exhibit rectifying characteristics are called Schottky
barriers.1 The simplest situation is when the electrostatics of the junction is determined
by the work functions � of the two components, and by the electron affinity χS of the
semiconductor.2 Such a situation is shown in Fig. 11.3 for the case of �M > �S . On

1 After Walter Schottky, who performed pioneering studies on these contacts in the 1930s.
2 Charges at the interface, in the form of dipoles and surface states, often due to the contamination and

imperfection of the interface, can also affect the electrostatics, but these factors are not considered here.
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Figure 11.3 Energy-band diagrams showing a metal/semiconductor junction. (a) Prior to joining
the two components. (b) At equilibrium. (c) Forward bias. (d) Reverse bias.

bringing together the metal and the semiconductor, electrons transfer from the latter
to the former to equilibrate the system. Thus, a depletion layer forms (see Fig. 11.3b),
the width of which can be modulated by applying a voltage to the diode. For an n-
type semiconductor, forward bias means a negative potential on the semiconductor with
respect to that on the metal (see Fig. 11.3c).

The applied bias also changes the height of the barrier for electrons crossing the
junction from the semiconductor to the metal. In this respect, the behaviour is no different
from that of an np-junction. However, in the latter, the net flow across the junction is
determined to some extent by the subsequent diffusion of the injected electrons in the p-
region. This is usually the bottleneck to transport, and does not lead to much disturbance
from equilibrium in the junction region. Thus, the quasi-Fermi levels can be regarded as
being almost constant across the junction (see Section 6.5). Contrast this to the situation
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shown in Fig. 11.3c, where there is an abrupt change in EFn at the interface. As discussed
in Section 6.7.3, this indicates a severe departure from equilibrium. Such a situation arises
because the electrons injected into the metal are not throttled by diffusion. They join the
multitude of electrons already in the conduction band of the metal (≈1023 cm−3), and a
large current can be maintained by an infinitesimal field. Thus, the bottleneck to charge
transport is the junction itself, and the current across the junction has to be driven by a
change in EFn .

The situation is akin to that in an N p heterojunction with a very short base. From
(9.11) the current density due to electrons injected into the metal can be written as

Je (S → M) = qn0
e−Va/Vth

1
vR

. (11.1)

where Va < 0 in forward bias. Note that this current density is positive if the x-direction
is defined as x increasing to the right. From Fig. 11.3b, and from (4.14)

n0 = NC e−�B/kB T , (11.2)

so Je (S → M) can be written as

Je (S → M) = q NC e−�B/kB T e−Va/Vth vR , (11.3)

where �B = (�M − χS) is the Schottky barrier height. At zero-bias, Je (S → M)
must be balanced by an equal flow of electrons from the metal to the semiconductor
Je (M → S). This flow from the metal is not affected by the applied bias as �B is fixed
by the material constants. Thus, the full expression for the current is

Je ≡ Je (S → M) − Je (M → S) = q NC e−�B/kT (e−qVa/kT − 1)vR . (11.4)

11.1.1 Thermionic emission and tunnelling

Despite the discontinuity in the quasi-Fermi level at the interface, quasi-equilibrium can
still be considered to apply in the semiconductor itself. The situation is illustrated in
Fig. 11.4a, which depicts thermionic emission, i.e., the current is due to a relatively
few energetic electrons drawn from a much larger pool of electrons that remain in
an equilibrium distribution. It is guaranteed that the number of thermionically emitted
electrons is relatively small if the depletion-region potential drops by at least kB T eV
within one mean-free-path length l̄ of the interface [2].

If the doping density is very large, then the bands will bend very steeply in the
semiconductor (see Fig. 11.4b). In this case, if the barrier becomes very thin (less than
≈5 nm), then tunnelling of electrons can take place. Electrons can pass through such
a barrier in either direction, so the rectifying nature of the contact is lost. The I-V
characteristic becomes linear about the origin, and the contact is said to be ohmic. Such
contacts are desirable when the metal is required merely to connect the semiconductor
to external circuitry with minimal voltage drop. Both ohmic and rectifying contacts are
used in the HJFETs described in the following sections.
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Figure 11.4 Charge transport at the Schottky barrier interface. (a) Thermionic emission of
electrons in the shaded portion of the distribution over a barrier with a thick space-charge region.
(b) Tunnelling of electrons in the shaded portion of the distribution through a barrier with a thin
space-charge region.

11.2 MESFET

The basic MESFET structure is shown in the top part of Fig. 11.2. The n+ ‘cap’
layer assures ohmic contacts for the source and drain, while the gate metallization is
chosen to make a rectifying contact to the less heavily doped n-type ‘active layer’. These
n-regions are grown epitaxially either on a weakly doped p-region or on a semi-insulating
substrate.3

11.2.1 Channel formation and threshold voltage

In the top part of Fig. 11.5 the space-charge region is shown in a MESFET with
VDS > 0. This bias makes the semiconductor potential at the drain end of the device
more positive than at the source end. Thus, with respect to the gate, the drain end of the
gate/semiconductor Schottky barrier is more reverse biased, so the space-charge region
is wider there. The band-bending in this layer, and at the n/semi-insulating junction,
define a channel, through which charge must pass en-route to the drain from the source,
as illustrated in the lower part of the figure. Overall control of the space-charge-region
width W (x) is due to the bias VGS applied to the Schottky diode. If, at zero bias, W is
less than the thickness of the active layer, then the channel is ‘open’. To ‘close’ it the
Schottky diode must be reverse biased sufficiently for the depletion-region edge to reach
the interface between the active and semi-insulating regions. The value of VGS required
to do this is the threshold voltage VT : it is negative for n-type semiconductors. FETs
which are ON when VGS = 0 are termed depletion-mode FETs.

3 Semi-insulating refers to a semiconductor in which the conductivity can be reduced to near-intrinsic
proportions, usually by charge compensation involving defects in the material [3].
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Figure 11.5 Channel formation in a MESFET.

The closure of the channel must not be taken literally. It is to be taken in the same
context as ‘pinch-off’ of the channel is used in MOSFETs. It marks the onset of drain-
current saturation in FET models of the ‘Level 1’ variety. These models predict that the
channel charge goes to zero at the drain-end of the channel, whereas, in fact, the charge
is small, but finite, and the current is sustained at a high value by virtue of the fact that
the electrons are moving very quickly in this part of the channel.

A case in which there would be truly no channel would be if the semiconductor
active layer were so thin that the depletion region at zero-bias reached right through the
semiconductor. To open up a channel in this case it would be necessary to forward bias
the Schottky junction. Recall from Section 11.1 that the current grows exponentially
with forward bias, so there is a limit to the forward bias that can be applied: it is set by
the ‘leakage’ current to the gate that can be tolerated, and is only a few tenths of a volt.
A MESFET working in this mode would have a positive threshold voltage and would be
called an enhancement-mode device.

11.2.2 Drain current

To obtain a rudimentary expression for the ON current in a MESFET, consider that
transport is due only to drift:

�Je = −qn�vde , (11.5)
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with �vde being the electron drift velocity in the channel. We use a ‘Level 1’ model for
the drift velocity-field relation

vde = µeEx = µe
∂VC S

∂x
, (11.6)

where VC is the channel potential. The drain current is

ID = −Je Z (a − W (x)) , (11.7)

where a is the thickness of the active layer, Z is the width of the transistor, and the
leading minus sign supports the IEEE convention, which assigns a positive value to
a positive charge flow entering a device from an external terminal. From np-junction
theory, (6.22) yields

W (x) =
√

2εs

q ND
(Vbi − [VGS − VC S(x)]) . (11.8)

Substituting in (11.7) for W and for vde, and integrating, yields

ID = G0

{
VDS − 2

3V 1/2
P

[
(VDS + Vbi − VGS)3/2 − (Vbi − VGS)3/2

]}
, (11.9)

where G0 is the channel conductance when there is no depletion region:

G0 = qµe NDa
Z

L
, (11.10)

and VP is the so-called pinch-off voltage: it is the potential drop across the depletion
region at threshold, i.e.,

VP = a2q ND

2εs
= Vbi − VT , (11.11)

where ND is the doping density of the active layer and εs is the semiconductor permit-
tivity. In a depletion-mode device VP > Vbi , so VT is negative.

If (11.9) is examined at various VDS , it can be seen that the drain characteristic is
linear at low VDS , then it reaches a peak, before becoming smaller at higher VDS . This
is the same behaviour as observed for the ‘strong-inversion, source-referenced’ models
for the MOSFET in Section 10.4 (see Fig. 10.11), and indicates that our models break
down at some point. Here, the MESFET model breaks down when

VDS ≡ VDSsat = VGS − VT . (11.12)

This is the same condition at which the Level 1 model of the MOSFET was found
to break down (assuming a body-effect coefficient of unity). It is associated with the
channel pinching-off at the drain end, i.e., W (L) = a. As before, the model is extended
into the saturation region by allowing ID to remain constant at the peak value given by
(11.9), i.e.,

IDsat = G0

{
VGS − VT − 2

3V 1/2
P

[(VP )3/2 − (Vbi − VGS)3/2]

}
. (11.13)
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Figure 11.6 Drain characteristic of the TQHiP MESFET from Triquint. The parameter is VGS ,
which varies from 0 to −2.4 V in increments of −0.2 V. This depletion-mode FET has
L = 500 nm, Z = 300 µm, VT = −2.3 V, and is intended for use in RF power amplifiers and
switches.

As an example of the drain characteristic of a MESFET, Fig. 11.6 is offered. It is for
a power MESFET from Triquint, and the relevant feature here is the need to apply a
negative VGS in order to turn the device OFF, i.e., it is a depletion-mode FET.

11.3 HEMT

In a HEMT, the channel is not contained within the n-type material that forms the
Schottky barrier, as occurs in a MESFET. Instead, the channel exists in an underlying,
undoped, semiconducting layer (see Fig. 11.2). The absence of doping means no ionized
impurity scattering, which is one of the factors that leads to the exceptionally high
mobility of this transistor. The barrier semiconductor, besides forming a heterojunction
with the gate metal, also forms a heterojunction with the channel layer, as can be
seen in Fig. 11.7. The latter heterojunction is constructed in a similar fashion to that
illustrated for the InGaP/GaAs HBT in Fig. 9.2. However, in this AlGaAs/GaAs case,
the electron affinities of the two semiconductors are not equal, so there is a discontinuity
in the conduction-band edge. This discontinuity defines one side of the channel, within
which are confined the electrons induced into the undoped semiconductor during the
charge transfer that accompanies equilibration of the system. The large band-bending in
the undoped semiconductor forms the other side of the confining ‘potential well’. The
confinement in the y-direction is such that the electrons are free to move only in the two,
mutually perpendicular directions: they form a two-dimensional electron gas (2-DEG)
in the channel in the plane parallel to the interface.
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Figure 11.7 Channel formation in a HEMT. The bottom figure is a slice through the HEMT under
the gate, showing the Schottky barrier and the conduction-band edge in the underlying layers in
an AlGaAs/GaAs HEMT. The band diagram is drawn for equilibrium conditions. E1 is the
energy level of the first conduction sub-band arising from electron confinement in the narrow
potential notch.

11.3.1 The 2-DEG

To appreciate the significance of the 2-DEG, let us represent the ‘triangular’ well at
the AlGaAs/GaAs interface by a ‘rectangular’ well, as illustrated in Fig. 11.8. For the
moment, as a further simplification, let us approximate this asymmetrical, finite barrier,
by a symmetrical barrier stretching to infinite energy. Within such a well the Schrödinger
Wave Equation (2.3) reduces to

d2ψy

dy2
+ k2

yψy = 0 , (11.14)

where the wavevector in the y-direction is

ky = 1

�

√
2m∗Ey . (11.15)

The boundary conditions for this case of an infinitely high barrier are

ψy(0) = ψy(a) = 0 . (11.16)
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Figure 11.8 Representing the asymmetric, finite, triangular potential well at the AlGaAs/GaAs
interface by an asymmetric, finite, rectangular well.

So the solution is

ψy(y) = A sin(ky y) , (11.17)

where A is some constant. It follows that ky is quantized:

ky = nπ

a
, n = 1, 2, 3 · · · . (11.18)

Therefore, and this is the important point, the y-directed energy Ey is also quantized

Ey,n = n2 �
2π2

2m∗a2
. (11.19)

Of course, as we saw in Chapter 2, the allowed energy levels are always quantized
because of their relation to k, which is quantized according to the reciprocal of the
length of the region of interest. Here, because the length a is small, the allowed energy
levels are widely separated, and cannot be viewed as a continuum, as we have done
elsewhere in talking about the conduction band.

However, there are bands in this case too, but only in the directions perpendicular
to that of the channel thickness, e.g., associated with each of the allowed energy levels
Ey,n are allowed bands of energy in the unconstrained perpendicular directions x and z.
If we suppose that electrons stay near the bottom of these bands, then a parabolic E-k
dispersion relationship can be used to characterize these bands. Further, if we assume
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Figure 11.9 Two-dimensional energy sub-bands associated with each allowed energy level Ey,n .
(a) Unfilled bands. (b) Some band-filling, as determined by the position of the Fermi energy.
From Roblin and Rohdin [4], C© Cambridge University Press 2002, reproduced with permission, and

courtesy of Patrick Roblin, Ohio State University.

an isotropic effective mass, the total energy can be written as

E = Ey,n + �
2

2m∗ k2
⊥ , (11.20)

where k2
⊥ = k2

x + k2
z . Thus, associated with each allowed energy Ey,n , there is a 2-D

sub-band (see Fig. 11.9).

11.3.2 The finite well

Electrons cannot escape from an infinite well, as we implied above by setting
ψ = 0 at y = 0, a in formulating our expression for the discrete energy levels. The
wavefunctions are sinusoidal and the probability density function ψψ∗ for the first
energy level, for example, indicates the greatest probability of finding the electrons as
being at the centre of the well. This is highly desirable for a FET because it keeps
the electrons away from the interface, at which there may be crystalline imperfections,
which would cause increased scattering and a reduction in mobility.

In real devices, as illustrated in Fig. 11.8, the well is not finite, so electrons can escape
through the sides of the potential well. In other words, the probability density function
for channel electrons is not zero in the barrier.4 The situation is illustrated in the lower

4 For a derivation of the wavefunctions in a finite potential well, see Griffiths [5].



P1: Trim: 174mm × 247mm Top: 0.498in Gutter: 0.664in

pulfrey_cup cuuk824/Pulfrey 978 0 521 51460 6 December 25, 2009 21:51

206 11 HJFET basics

y

E
le

ct
ro

n 
en

er
gy

AlGaAs GaAsGATE

+
+++

+ + + + + +

+
+++

+

+
+

+
+

(c) (d)

+

++
+

+
+

+
+

+
+

++

+
++

(b)(a)

+
+

El

El

El El

a−qV
a−qV

EC

EV

EF

EC

EF

EC

EFn

EC

EFn

Figure 11.10 Conduction-band diagrams illustrating the control of the electron concentration in
the channel by the gate bias. (a) Equilibrium, wide barrier layer. (b) Equilibrium, barrier layer
just wide enough for the two depletion regions to just not overlap. (c) Reverse bias. (d) Reverse
bias at the threshold condition.

panel of Fig. 11.8. Whereas the penetration into the barrier cannot be prevented, its effect
on the mobility can be mitigated by incorporating a thin, undoped region of AlGaAs
barrier material, a so-called spacer layer, next to the interface. This removes a source
of bulk scattering, namely, ionized-impurity scattering.

11.3.3 Electron concentration in the 2-DEG

To find the number of electrons in each sub-band it is first necessary to find the density
of states in k⊥-space. Recall that in 3-D the corresponding problem was one of counting
states in the volume of a sphere (see Fig. 3.10). Here, it is a case of counting states in
a circle of area πk2

⊥. The ‘skin’ of this circle has an area of 2πk⊥ ∂k⊥. In 1-D a state
occupies 2π/L of k-space, where L is the real-space length in that direction (see (2.12)).
Therefore, the number of states in our skin, or annulus, is

N2D = 2
2πk⊥ ∂k⊥

(2π/Lx ) (2π/Lz)
, (11.21)

where Lx and Lz are the side-lengths of the channel, and the leading 2 in the numerator
accounts for spin.
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Dividing by the real-space area Lx Lz , and converting ∂k⊥ to ∂ E via (11.20), and
finally dividing by ∂ E , the 2-D density of states per unit area and per unit energy, for
each sub-band, is

g2D = m∗

π�2
. (11.22)

Note that this density of states for each sub-band is independent of energy. This makes
for an easy solution for the electron concentration in each sub-band, i.e., from (3.33)

n2D,n =
∫

sub−band

m∗

π�2
f (E) d E . (11.23)

Each sub-band starts at an energy E = Ey,n , and if we assume that the top of each sub-
band is at infinity, then, on using the Fermi-Dirac distribution function and integrating,
we obtain

n2D,n = m∗kT

π�2
ln

[
exp(

EF − Ey,n

kT
) + 1

]
. (11.24)

Thus, the total concentration of electrons in the channel is

ns =
∞∑

n=1

n2D,n , (11.25)

where the subscript s reminds that this is a surface concentration: an upper limit would
be around (1023)2/3,≈1015 cm−2.

11.3.4 Controlling the channel charge by the gate potential

Having considered the metal/semiconductor and semiconductor/semiconductor junc-
tions separately, let us now bring them both together to form the structure of the HEMT
under the gate, as first illustrated in Fig. 11.7. To equilibrate this system the donors in
the AlGaAs barrier layer supply electrons to both the gate metal and to the 2-DEG in the
channel. Depletion regions result at both ends of the barrier layer (see Fig. 11.10a). If
the barrier layer is sufficiently thick that the two depletion regions do not overlap, then
ns will reach its highest value, labelled ns0.5 Fig. 11.10b shows the case where the two
depletion regions just meet at equilibrium, but do not overlap. This is the equilibrium
situation that is sought in HEMTs.

If a reverse bias is now applied to the gate/barrier Schottky diode, the gate demands
more electrons. These must come from the electrons already donated to the channel
(see Fig. 11.10c). Thus, ns decreases. This is illustrated in Fig. 11.10c by the electron
quasi-Fermi level EFn dropping towards the first allowed energy level E1 (≡ Ey,1).
Eventually, as the reverse bias is further increased, a situation will be reached where all
the donors are called upon to donate electrons to the gate. In this case ns → 0, and the
applied voltage Va = VT (see Fig. 11.10d).

5 In modern HEMTs ns0 may be as high as 1013 cm−2.
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Figure 11.11 Drain I-V characteristic for an AlGaAs/GaAs power HJFET from Triquint (0.15 µm
Power pHEMT 3MI). Gate length =150 nm, gate width =100 µm. The VGS increments are 0.3 V.

11.3.5 The drain I-V characteristic

As we have just seen, ns is controlled by Va = VGS . The drain current is drawn from this
charge, and the familiar ID-VDS characteristic of a FET results, with saturation being due
to either pinch-off or velocity saturation. However, the device we have been discussing
is a depletion device, so it will be ON at VGS = 0, and the saturation current will be
progressively reduced as VGS is made more negative. It is possible to further increase
IDsat by applying VGS > 0, i.e., by operating the FET in the enhancement mode. An
example of a commercial device that allows this is shown in Fig. 11.11. Note that a
positive VGS forward biases the gate/AlGaAs Schottky diode, so the enhancement mode
of operation is limited by the source-gate leakage current that can be tolerated.

Exercises

11.1 Consider two diodes: one is a metal/n-Si Schottky diode, and the other is a
p−/n-Si homojunction. The n-type doping is quite high and is the same for both
diodes. Which diode is more likely to deliver a forward-bias electron current at
the hemi-Maxwellian velocity limit? Give reasons for your answer.

11.2 Consider a GaAs MESFET with a body thickness of 500 nm, a doping density of
ND = 1016 cm−3 and a Schottky barrier height of 0.8 eV.
(a) Is this a depletion-mode or an enhancement-mode FET?
(b) Calculate the threshold voltage.

11.3 Consider a metal/X/Y HEMT with no spacer layer; X and Y are lattice-matched
semiconductors. The work functions of the metal, X and Y can be taken as 3.5,
2, and 4 eV, respectively. The electron affinities of X and Y are 1.5 and 3 eV,
respectively. The bandgaps of the X and Y are 4 and 2 eV, respectively.
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(a) Draw energy-band diagrams, showing to approximate scale in energy (e.g.,
1 cm ≡ 1 eV), the zero-field and local-vacuum levels, the conduction bands
and valence bands for the two semiconductors, and the Fermi levels for the
metal and the semiconductors under the following conditions:
(i) for the three, separated components of the device;

(ii) for the joined components at equilibrium.
(b) What is the height of the Schottky barrier?
(c) What is the height of the potential well at the X/Y interface?

11.4 HEMT A and HEMT B are identical, except that �gate,A < �gate,B, where � is
the metal work function.

Which transistor has the more negative threshold voltage, and why?
11.5 Consider Fig. 11.10b, c and d. This sequence shows an HJFET at equilibrium,

with a small negative gate voltage applied, and with a gate voltage equal to the
threshold voltage, respectively. Call this HJFET A.

Consider Fig. 11.10a, which shows the equilibrium band diagram for an HJFET
with a thicker barrier layer. Call this HJFET B.

Which of the two HJFETs has the more negative threshold voltage?
11.6 Familiarize yourself with (10.41).

Imagine that an equation of similar form applies to a HEMT over the full length
of the channel, and for VT ≤ VGS ≤ 0.

An Al0.5Ga0.5As/GaAs HEMT has a barrier layer of thickness 30 nm and a
channel that can be taken to be an infinite square well of thickness 8 nm.

At equilibrium, EF lies mid-way between the first and second quantized energy
levels in the channel.
(a) Evaluate the electron charge density in the channel from (11.25).
(b) Evaluate the threshold voltage for this transistor.

11.7 For the case of conduction electrons, plot the energy dependence of the 2-D
density of states and of the 3-D density of states on the same graph.

The plot should reveal that the 2-D DOS at each sub-band energy level equals
the 3-D DOS at the corresponding energies.
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12 Transistor capacitances

The capacitance of a transistor is a crucial consideration when designing devices for
applications in the commercially and societally important areas of digital logic, high-
frequency signal processing, and memory. Accordingly, as a pre-cursor to the subsequent
chapters on transistors suited to these applications, transistor capacitance is given a
thorough treatment in this chapter of its own.

The approach taken presents capacitance in a general way that can be applied to all
transistors. The usual practice is to treat capacitance in an ad hoc manner, sometimes
involving charges of opposite polarity, as in junction capacitance, and sometimes con-
sidering just one polarity of charge, as in storage capacitance, for example. In fact, the
origin of these two capacitances is the same: in the case of the emitter/base capacitance,
for example, it is the change in charge within the device due to electrons that have
entered from the emitter to set-up a new steady-state charge profile in the transistor in
response to a change in base potential. This fact is recognized here, and provides a view
of capacitance that is both physically based and intuitively appealing. Our approach is
based on that of Tsividis for MOSFETs [1], and leads naturally to a double-subscripted
specification of capacitance in all types of transistor, e.g., CE B or CSG . Thus, a 3×3
capacitance matrix captures all the capacitive elements of a three-terminal device, and
allows for non-reciprocity.

The capacitances described here are used without further ado in subsequent chapters
on transistors for applications in digital logic (Chapter 13), high-frequency circuitry
(Chapter 14), and memory (Chapter 15).

12.1 Defining capacitance

Capacitance is related to charge, so let’s start with a general version of the equation for
the continuity of charge density from (5.22):

∂ Q

∂t
+ ∂ J

∂x
= 0 , (12.1)

where J is a conduction current of positively charged carriers that have a volumetric
concentration Q. Recall that this equation was derived from the Boltzmann Transport
Equation. To emphasize its fundamental nature, note that it can also be derived from

210
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Figure 12.1 Generic transistor, enclosed by a surface s, which is penetrated by three labelled
leads, along which charge can enter or leave the transistor.

Electromagnetic Theory via Maxwell’s equations, i.e., by applying the divergence
operator to Ampere’s Law, integrating over some volume, changing to a surface integral,
and using Gauss’s Law to bring in the charge density Q. Equation (12.1) expresses the
universal truth of the conservation of charge, e.g., if there is a decrease in charge within a
certain volume, then the removed charge must be carried to somewhere else by a current,
i.e., charge cannot be created nor destroyed.

For the generic transistor shown in Fig. 12.1, under steady-state conditions,

∂ Q1

∂t
+ ∂ Q2

∂t
+ ∂ Q3

∂t
= 0 , (12.2)

where Q j is the charge that enters or leaves the transistor through the lead attached to
region j .

It is very important to understand that by invoking steady-state conditions we have
not seriously limited the applicabilty of (12.2). For example, imagine that when an
N-MOSFET is OFF there is no electronic charge at the semiconductor surface. Now
consider what happens when the gate/source voltage is suddenly raised above the
threshold voltage. Electrons are injected into the channel and start to migrate towards the
drain. For the short period it takes for the electrons to travel to the drain (the so-called
transit time), there is a source current but no drain current. As (12.1) demands, the
charge builds up within the channel during this time. After the elapse of the transit
time, a current issues from the drain and we have steady-state conditions. For a 45-nm Si
MOSFET and electrons moving at vsat = 105 m s−1, the transit time is 450 fs. So, provid-
ing we don’t need to know anything about this device’s performance during time-frames
of this order, then the steady-state condition can be applied with impunity.

Each of the charges relevant to Fig. 12.1 is a function of the potentials applied to the
three leads: V1, V2, V3. Let’s use V1 as a reference; so the Q’s are now functions of the



P1: Trim: 174mm × 247mm Top: 0.498in Gutter: 0.664in

pulfrey_cup cuuk824/Pulfrey 978 0 521 51460 6 December 25, 2009 21:51

212 12 Transistor capacitances
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Figure 12.2 Equivalent-circuit represention of (12.7).

voltages V21, V31. Thus

∂ Q1

∂t
= ∂V21

∂t

∂ Q1

∂V21
+ ∂V31

∂t

∂ Q1

∂V31

∂ Q2

∂t
= ∂V21

∂t

∂ Q2

∂V21
+ ∂V31

∂t

∂ Q2

∂V31

∂ Q3

∂t
= ∂V21

∂t

∂ Q3

∂V21
+ ∂V31

∂t

∂ Q3

∂V31
. (12.3)

For a specific example, consider ∂V21/∂t = 0. This is the situation when VDS or VC E is
held constant in a FET or HBT, respectively. From (12.2) and (12.3)

∂V31

∂t

[
∂ Q1

∂V31
+ ∂ Q2

∂V31
+ ∂ Q3

∂V31

]
= 0 . (12.4)

For this to be true for any ∂V31/∂t , we must have

∂ Q3

∂V31
= − ∂ Q1

∂V31
− ∂ Q2

∂V31
, (12.5)

from which capacitances are defined:

C33 = C13 + C23 . (12.6)

Equation (12.5) is to be interpreted as: in response to a change in voltage ∂V31, the
change in charge that flows in through electrode 3 equals the negative of the changes in
charge that flow in through the other two electrodes. Capacitance allows this relationship
to be neatly represented in an equivalent circuit. As an illustration of this, use (12.3) and
(12.6), to recognize that

0 = −C13
∂V31

∂t
− C23

∂V31

∂t
+ C33

∂V31

∂t

≡ i1 + i2 + i3 , (12.7)

where the currents are often called charging currents, i.e., they exist only when the
charge is changing. This equation can be represented by the simple equivalent circuit
of Fig. 12.2. Usually, the capacitances are positive, as would be expected naturally, but
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Figure 12.3 Illustration of the principal intrinsic and extrinsic capacitance in a MOSFET. The
capacitors in the intrinsic case are within the dashed box; those without represent extrinsic
capacitance. The prime indicates total capacitance to distinguish it from capacitance per unit area.

there is at least one exception, as we mention in the next section. Our notation gives

C jk = −∂ Q j

∂Vk
if k �= j

C jk = +∂ Q j

∂Vk
if k = j

C j j =
∑
k �= j

C jk =
∑
k �= j

Ck j . (12.8)

For a proof of the last equation see Exercise 12.1.

12.2 MOSFET capacitance

The principal sources of capacitance in a MOSFET are shown in Fig. 12.3. Those
capacitors within the dashed border represent intrinsic capacitance, and those outside
represent extrinsic capacitance. All the capacitors are labelled with a prime, which
indicates that they represent total capacitances, unlike Cox , which represents capacitance
per unit area.

12.2.1 Intrinsic MOSFET capacitances

For the MOSFET, j = 1 ≡ S, j = 2 ≡ D, j = 3 ≡ G; the terminal currents can be
written as1 

 iS

iD

iG


 =


 C ′

SS −C ′
SD −C ′

SG

−C ′
DS C ′

DD −CDG

−C ′
GS −C ′

G D C ′
GG





 ∂VS/∂t

∂VD/∂t
∂VG/∂t


 . (12.9)

Because of (12.8) only 6 of these 9 capacitances are independent.

1 Here we’ve neglected the body of the device: including it would lead to a 4 × 4 capacitance matrix.
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Note that C jk is not necessarily equal to Ck j , i.e., the capacitances are not necessarily
reciprocal. For example, consider C ′

G D and C ′
DG when the FET is operating in the

saturation regime. Changing VDS brings about essentially no change in drain current,
which means there is no change in the total channel charge Q′

n , which, in turn, means
there is no change in Q′

G . Hence, in saturation, C ′
G D ≈ 0. However, on increasing VGS ,

the charge all along the channel Qn(x) increases negatively (see (10.40)). Some of this
charge is supplied by the drain, so ∂ Q′

D < 0 and C ′
DG > 0.

Because of (12.7), which is Kirchoff’s Current Law, only two of the three equations
in (12.9) are necessary to specify the currents. Taking the drain and gate currents, and
using VS as the reference potential:

iD = (C ′
G D + C ′

SD)
∂VDS

∂t
− C ′

DG

∂VGS

∂t

iG = −C ′
G D

∂VDS

∂t
+ (C ′

G D + C ′
GS)

∂VGS

∂t
, (12.10)

where use has been made of the summation expression in (12.8) to expand the C j j terms.
Recognizing that VDS = (VGS − VG D), and doing a bit of algebra, leads to

iD = C ′
SD

∂VDS

∂t
− (C ′

DG − C ′
G D)

∂VGS

∂t
− C ′

G D

∂VG D

∂t

iG = C ′
GS

∂VGS

∂t
+ C ′

G D

∂VG D

∂t
. (12.11)

These equations are represented in the schematic of Fig. 12.4. This is an extension of
Fig. 12.2, and is a connected version of the intrinsic part of Fig. 12.3. Figure 12.4b clearly
shows that C ′

G D represents the effect of the drain on the gate. In the case of Fig. 12.4c,
recognize that ∂VGS = ∂VG D , and define the transcapacitance as C ′

m = (C ′
DG − C ′

G D).
After doing this, it is clear that

iD = −C ′
DG

∂VG D

∂t
. (12.12)

This shows that C ′
DG represents the effect of the gate on the drain. The transcapacitance is,

therefore, the circuit element that allows non-reciprocity to be realized in the capacitance
between any two terminals.

An unusual intrinsic capacitance is C ′
SD for a FET operating in the non-saturation

regime. An increase in VDS widens the space-charge region, causing Qb to increase
negatively. This causes a positive charge change in the channel charge Qn , as can be
seen from Fig. 10.13. Because Qn is intimately related to QS and Q D , the changes in
theses charges are positive too. Thus, C ′

SD is negative, via the first equation in (12.8).
The intrinsic capacitances are computed automatically in numerical circuit simulators

such as SPICE.2 Analytically, it is not easy to derive expressions for the capacitances, but
it is worthwhile trying to do so in order to get a ‘feel’ for the factors that influence them.
Here, we consider the case of operation in the triode mode, and make the simplifying
assumptions of the Level 1 model (see Section 10.4.1), one of which is Qb(x) = Qb(0).

2 The capacitances are computed from the currents and voltages in the circuit via (12.7).
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Figure 12.4 Schematics of intrinsic MOSFET capacitance. (a) Complete representation.
(b) Determination of the effect of ∂VDS on iG . (c) Determination of the effect of ∂VGS on iD . In
(b) and (c) only those elements of (a) that are operative under the stated conditions are shown.

Further, we assume that the body-effect coefficient is unity. Thus, from (10.40), and
recognizing that, in the intrinsic device,

QG + Qn + Qb = 0 , (12.13)

we have

QG(x) = Cox (VGS − VT − VC S(x)) − Qb(0) . (12.14)

Recall that these charges are per unit area. The total gate charge is

Q′
G = Cox Z

∫ L

0
(VGS − VT − VC S(x)) dx − Z L Qb(0) , (12.15)

where Z and L are the width and length, respectively, of the gate. Now, turn this integral
over dx into one over dVC S by using the expression for current (10.46), and integrate
over the range of VC S from 0 to VDS , after eliminating ID from the equation by using
(10.34). The answer is, after some rearranging [2, pp. 242–244]

Q′
G = 2Cox Z L

3

(VGS − VT )3 − (VG D − VT )3

(VGS − VT )2 − (VG D − VT )2
− Z L Qb(0) . (12.16)
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Figure 12.5 Bias dependence in the triode regime (VDS < VGS − VT ) of the intrinsic gate-source
and gate-drain capacitances. VT = 0.3 V, VGS = 1.0 V.

Differentiating this, with respect to VSG (= −VGS) to get C ′
GS , and with respect to VSD

to get C ′
G D , gives

C ′
GS = 2

3
Cox Z L

[
1 − (VG D − VT )2

(VGS − VT + VG D − VT )2

]

C ′
G D = 2

3
Cox Z L

[
1 − (VGS − VT )2

(VGS − VT + VG D − VT )2

]
. (12.17)

Recall that these expressions are valid for the triode regime only (and under Level
1 conditions), but they do serve the useful purpose of illustrating (see Fig. 12.5) the
following features: the capacitances are of the order of Cox Z L; the capacitances are bias
dependent; as saturation is approached (VDS → (VGS − VT ) in Level 1), C ′

G D → 0, and
C ′

GS → 2
3 C ′

ox .
To briefly explain the trends in the figure, consider first C ′

GS , which represents the
effect of VS on Q′

G . In the context of increasing VDS with VD held constant, VS has
to change negatively. Thus, VGS increases, which means more charge on the gate.
Hence, C ′

GS increases with drain/source bias. Regarding C ′
G D , we know from our earlier

discussion that it is approximately zero in saturation. Figure 12.5 shows the trend towards
this condition as the triode regime is traversed. Recall that ID increases with VDS in
the triode regime, even when VGS is held constant. This means that the channel charge
density at the source end of the channel, Qn(0) ≈ Cox (VGS − VT ), is fixed. The drain
current at the source end of the channel is given by ID = Qn(0)v(0), where v is the
electron velocity. At the drain end of the channel the current is unchanged, but v will
be higher because of the increased field Ex . This means that |Qn(L)| decreases with
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VDS , and we know it tends to zero when saturation via pinch-off is reached. Thus the
total channel charge |Q′

n| decreases with drain/source bias, as illustrated in Fig. 10.13.
Because we are assuming no change in the body charge Q′

b, the gate charge must
decrease, and C ′

G D too.
The fact that the intrinsic capacitances are proportional to the gate length has meant

that their absolute magnitudes have decreased with scaling. The extrinsic capacitances
described below have also diminished, but not necessarily by as much as the intrinsic
capacitances because they are not directly dependent on the gate length. However, in
the highest performance Si CMOS circuitry, transistors are becoming so small that their
total capacitance is of less significance than the capacitance of the connecting wires that
join together the transistor logic gates.

12.2.2 Extrinsic MOSFET capacitances

In addition to intrinsic capacitance, there is also extrinsic capacitance in a MOSFET (see
Fig. 12.3). This results from the overlap of the gate and the heavily doped source and
drain regions, and from the np-junctions between each of these regions and the body, as
indicated in Fig. 12.3.

For the overlap capacitance at the drain end, for example,

C ′
G DO = −∂ Q′

G O

∂VD
, (12.18)

where the subscript O refers to ‘overlap’. From Gauss’s Law

Q′
G O = εox AOEO , (12.19)

where AO is the area of overlap, and EO is the magnitude of the y-directed field in the
overlap region. If we assume that there is no field-fringing, EO = −VDG/tox , where tox

is the oxide thickness. Thus, with this simplification, the overlap capacitance is just that
of a parallel-plate capacitor

C ′
G DO = εox AO

tox
. (12.20)

For the junction capacitances, see the treatment of bipolar transistors in the next
section. Other extrinsic capacitances in a MOSFET, such as the gate-body overlap
capacitance and the junction sidewall capacitance, are treated elsewhere [2, pp. 248–
249].

12.3 HBT capacitance

The following capacitances are relevant to all bipolar junction transistors, but we will
refer to them as ‘HBT capacitances’ because the HBT is the bipolar transistor we examine
in the later chapters on digital switching and high-frequency performance.

In HBTs the base is the controlling electrode, so we will start by expressing some
intrinsic capacitances due to changes in the base potential VB , or to the voltages VB E and
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Figure 12.6 Concept of intrinsic capacitance in an HBT. The space-charge regions at each junction
are unshaded, and the various capacitors representing different intrinsic processes, as described
in the text, are shown within these regions.

VBC . The cross-sectional areas of the emitter and the collector are usually larger than
that of the gate of modern FETs, so intrinsic capacitances tend to dominate in HBTs. As
usual, we consider only Npn transistors.

12.3.1 Emitter-base junction capacitance

When VB changes, such that ∂VB E > 0, for example, the emitter-base potential barrier is
lowered, and the space-charge region shrinks. The shrinkage on the n-side, for example,
is due to electrons flowing in from the emitter lead and nullifying the charge of some
of the ionized donors that constituted the previous depletion region (see Fig. 12.6). The
emitter-base junction capacitance is

C ′
E B, j = −∂ Q′

E, j

∂VB E
, (12.21)

where Q′
E, j refers to the total number of electrons that have entered through the emitter

contact and come to reside at the edge of the junction. Note from Fig. 12.6 that holes
also flow in from the base contact to effect a corresponding shortening of the depletion
region on the base side of the junction.

If we wish to consider the hole charge explicitly, we examine

C ′
B E, j = −∂ Q′

B, j

∂VE B
. (12.22)

Evidently, this junction capacitance is reciprocal.
Inasmuch as the base-emitter junction is planar, the junction capacitance can be

evaluated as we did earlier for C ′
G DO , resulting in the ‘parallel-plate’ expression

C ′
E B, j = εs AE

W
, (12.23)
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where εs is the permittivity of the semiconductor, AE is the area of the emitter-base
junction, and W is the depletion region width (6.17).3

12.3.2 Base storage capacitance

Another important capacitance is the base storage capacitance

C ′
E B,b = −∂ Q′

E,b

∂VB E
, (12.24)

where Q′
E,b is the electronic charge in the base that is injected from the emitter, in

response to ∂VB E , in order to establish a new electron profile in the base, from which
the new collector current is derived. For example, if ∂VB E increases the forward bias of
the emitter-base junction, electrons will enter the base to form a steeper, steady-state,
concentration gradient, from which a larger IC (VB E ) will issue. As one electron exits the
base to the collector, another enters the base from the emitter, so the electron ‘storage’ in
the base is, in fact, a dynamic process. The charging current that sets up the steady-state
concentration gradient is completed by holes flowing into the base from the base lead
(see Fig. 12.6). This flow maintains charge neutrality in the quasi-neutral base.

If we choose to look at this capacitance from the hole storage point of view, we write

C ′
B E,b = −∂ Q′

B,b

∂VE B
. (12.25)

It follows that the base storage capacitance is reciprocal.
To evaluate C ′

E B,b, let us simplify the problem by assuming that the base is so short that
there is negligible recombination of electrons and holes.4 The electron profile, stretching
across the quasi-neutral base from x = 0 to x = WB will be linear in this case. Thus:

Q′
E,b = −q

WB AE

2
[n(0) − n(WB)] − qWB AE n(WB)

= −q
WB AE

2
[n(0) + n(WB)]

= −q
WB AE

2

[
n∗

E + n∗
C

]
, (12.26)

where we have used the boundary conditions (9.7) and (9.8). Recalling the bias-
dependence of n(0) (see (9.2)), and differentiating, we obtain

C ′
E B,b = q2WB AE

2kB T
nop exp(VB E/Vth) . (12.27)

The importance of this capacitance can be appreciated by noting its strong bias depen-
dence. However, its significance has decreased over the years as basewidths have shrunk.

3 If the bias change ∂VB E is not small compared to the dc bias VB E , then W in (12.23) should be an average
value.

4 In modern HBTs WB can be as small as 30 nm, which is much less than the minority carrier diffusion
length, so the approximation of no recombination is satisfactory in such cases.
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Figure 12.7 Illustration of the change in electric field profile in the base-collector depletion region
due to the passage of a charge qe. In this case Q = 3q, and qe = −2q; the latter is located
half-way between the edges of the depletion region, across which a constant voltage VC B is
maintained.

12.3.3 Emitter storage capacitance

The corresponding emitter storage capacitance C ′
B E,h is not usually of significance in

HBTs because injection of holes into the quasi-neutral emitter from the base is thwarted
by a large potential due to the valence band offset, as we demonstrated in Section 9.3.2.
Thus

C ′
B E,e = −∂ Q′

B,e

∂VE B
≈ 0. (12.28)

12.3.4 Base-emitter transit capacitance

We now discuss a rather unusual capacitance that is related to the transit of electrons
across the relatively wide space-charge layer at the reverse-biased base-collector junction
(active mode of operation). The electrons originate in the emitter lead, but the holes they
draw in from the base are different in number, and this turns out to be particularly
important in estimating fT , a high-frequency figure-of-merit (see Chapter 14). We call
this capacitance the base-emitter transit capacitance:

C ′
B E,t = −∂ Q′

B,h

∂VE B
. (12.29)

‘Base-emitter’ is used in the description, rather than ‘base-collector’, because, even
though the electrons are in the base/collector space-charge region, they originate in the
emitter.

Imagine that a uniform field Ew exists in the base-collector space-charge layer, which
we represent here by a depletion region of width w. The field is maintained by a
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constant voltage VC B , resulting in charges +Q and −Q at the edges of the depletion
region (see Fig. 12.7a). Electrons, comprising a charge of qe, in transit across the region
alter the field (see Fig. 12.7b). Physically, this is brought about by positive charges
flowing through the external collector-base circuit, and building up at the edges of the
depletion region. These charges, q0 and qw in Fig. 12.7b, are often called image charges.
Clearly,

qe + q0 + qw = 0 . (12.30)

The assumption of constant VC B , and the application of Gauss’s Law, yield

(Q − q0)x + (Q + qw)(w − x) = Qw . (12.31)

This leads to expressions for the image charges:

q0 = −qe

(
1 − x

w

)
and qw = −qe

x

w
. (12.32)

We need now to find the cumulative effect on q0 of having a beam of electrons stretching
across the space-charge region. In each distance element dx let there be qe/AE electrons
per m2. Assuming a constant electron drift velocity �vde, the current density due to this
moving element is

�Je = qe

AE dx
�vde . (12.33)

Substituting for q0, and using the IEEE convention that the collector current is positive
for electrons flowing out of the device, yields

q0 = IC

vde

(
1 − x

w

)
dx . (12.34)

Integrating this, and assuming that the drift velocity is constant, gives the hole charge
that enters the base in response to a beam of electrons in transit across the collector-base
depletion region:

Q′
B,h ≡

∑
q0 = IC

vde

w

2
. (12.35)

Using this in (12.29), we can write

C ′
B E,t ≡ − ∂ IC

∂VE B

∂ Q′
B,h

∂ IC
= gm

w

2vde
, (12.36)

where gm = ∂ IC/∂VB E ≡ ∂ IC/∂(−VE B) is the transconductance, which we will
encounter in Chapter 14. This capacitance is very important in high-frequency HBTs,
on account of the relatively large width of the space-charge region at the base-collector
junction.

‘Transit capacitance’ in FETs
The appearance of 2vde in (12.36) rather than simply vde is noteworthy because it implies
that the signal velocity exceeds the electron transit velocity! One way of understanding
this is to note that charge appears at the collector (in the form of an image charge)
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before the electron actually reaches that electrode. Recall that the image charges are
a necessary feature of the rearrangement of the field due to the electrons in transit.
In a MOSFET, electrons in transit along the channel also experience a field Ex from
the applied drain/source voltage. However, there is no corresponding favourable image-
charge effect because the image charges appear almost entirely on the gate, and not
on the drain [3]. This is because of the two-dimensional geometry of the FET and, in
particular, of the gate electrode’s close proximity to the channel.

12.3.5 Collector-base junction capacitance

In the active mode of operation, the base-collector junction is reverse biased. Thus, there
is negligible injection of minority carriers across the junction, i.e., there are no storage
capacitances associated with a change in VBC . Thus, the only significant collector-base
capacitance is the junction capacitance

C ′
C B = −∂ Q′

C, j

∂VBC
= εs AC

w
. (12.37)

Even though the depletion region width w at this junction is greater than at the emitter-
base junction, because of the reverse bias, C ′

C B is often significant as the collector area
AC is usually larger than that of the emitter (see Fig. 9.1).

Exercises

12.1 In (12.8) it is claimed that

C j j =
∑
k �= j

C jk =
∑
k �= j

Ck j . (12.38)

Prove this.
12.2 In Section 12.2.1 the following was quoted as an example of transcapacitance in

MOSFETs:

Cm = Cdg − Cgd . (12.39)

The inclusion of this element in an equivalent circuit allows for the differences
between the effects of the gate on the drain and of the drain on the gate to be
properly accounted for.

Does the equivalent circuit need to be modified to allow for differences
between Cgs and Csg?

12.3 Is it possible to have non-reciprocal capacitance in a two-terminal system?
12.4 In Section 12.2.1 there is some discussion about Csd being negative when a

MOSFET is operating in the triode regime. What is Csd when the MOSFET is
in saturation?

12.5 Consider a CMOS45 MOSFET of gate length L = 45 nm and gate width Z .
The edges of the source and drain regions distal from the gate edge can be
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taken to be 3L . The lateral intrusion of the source and drain implants under the
gate is 3.75 nm. The source and drain doping densities are 2 × 1020 cm−3, and
the body doping density is 3.24 × 1018 cm−3. For the oxide, take εr = 15 and
tox = 4.8 nm.

Evaluate the total capacitances C ′
ox , C ′

G DO and C ′
J S .

12.6 Consider the base-emitter transit capacitance CE B,t in an HBT. The benchmark
case (case A) is when the electron velocity is constant at vsat throughout the
base/collector space-charge layer.

Case B is when the electron velocity overshoots (assumed instantly) to 2vsat

in the first half of the space-charge layer, and then continues in the second half
of the layer at vsat.

Case C is when the electron velocity changes from vsat to 2vsat at the half-way
point.
(a) What are the capacitances in each case?
(b) What is the physical reason for one of the cases being better than the others,

i.e. having the lowest capacitance?
12.7 Vertical scaling of HBTs has led to a situation where the base-emitter transit

capacitance is now larger than the base-storage capacitance.
Confirm this by evaluating CE B,t and CE B,b for the following HBT, which

uses GaAs for the base and collector regions.

WB = 30 nm, NB = 5 × 1019 cm−3, NC = 5 × 1016 cm−3, VC B = 3 V.

12.8 The junction capacitance of a 10−3 cm2 abrupt-junction n+ p diode in reverse
bias has the experimental values shown in the table below. Plot these data in such
a way that a linear relationship results, from which the p-type doping density
and the built-in potential can be ascertained.

C (pF) 3.849 3.288 2.626 2.253 2.008 1.826
V (V) −0.5 −1 −2 −3 −4 −5

12.9 A p+n diode is fabricated in n-type silicon of resistivity 10 
·cm. For reverse-
bias voltages of greater than a few hundred millivolts, the current density in the
diode is constant at 100 pA cm−2.
(a) Calculate the base-storage capacitance of this diode when the forward current

is 1 mA.
(b) If this diode is now used as a varactor, what must be the diode area if the

capacitance is to be 100 pF at a reverse bias of 50 V?
12.10 Two np+ diodes have p-type GaAs bases of doping density 1019 cm−3. Each diode

has the same emitter doping density of ND = 5 × 1017 cm−3, and is operated at
a forward bias of 1.25 V. The emitter in Diode A is GaAs, whereas in Diode B
it is Al0.3Ga0.7As.

Which diode has the higher junction capacitance?
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13 Transistors for high-speed logic

Digital logic is a matter of charging and discharging capacitors as quickly as possible.
If �V is the change in voltage required to signify a change in logic level at a node of
constant capacitance C , then the switching time is

τ = C�V

I
, (13.1)

where I is the average current during the switching cycle. Thus, a successful digital
logic technology would demand only small voltage swings, and be capable of supplying
large currents to circuits of low capacitance.

This chapter draws on the material on the DC performance of MOSFETs (Chapter 10)
and HBTs (Chapter 9), and on the chapter on capacitance (Chapter 12), to explain the
features of modern transistors that make them suited to high-speed logic applications.
The emphasis is on Si MOSFETs, which, in the form of complementary MOS technology
(CMOS),1 have enabled the ULSI-circuitry2 that has brought electronics into the lives
of so many people. At lower levels of integration, and in applications where speed is
more important than static power dissipation, emitter-coupled logic (ECL) using HBTs
is a viable technology; it is considered at the end of this chapter.

13.1 Si CMOS

13.1.1 General features of CMOS

In CMOS, logic gates comprise pairs of n- and p-type enhancement-mode MOSFETs.
We have only considered the former so far, but the latter can be easily envisaged
by changing all doped regions from n-type to p-type, and by reversing the polarity
of the applied voltages. In CMOS technology, the threshold voltage of the P-FET is
usually made to be opposite, and nearly equal in magnitude, to that of the N-FET. A
complementary pair of transistors is shown at the end of the CMOS processing sequence
in Fig. 13.1.

1 Invented by Frank Wanlass, Fairchild Semiconductor, 1963.
2 Ultra-Large-Scale-Integrated, i.e., more than a million devices per chip.

225
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Figure 13.1 Some key steps in the fabrication of Si FETs for deep sub-micron CMOS. Courtesy of
Alvin Loke, AMD, Colorado.

In a sub-circuit of one P-FET and one N-FET, the two gates of the two transistors
are connected together, and the threshold voltages are such that in either of the logic
states (HI or LO) only one of the transistors is ON. Thus there is, in principle, no static
power drain. This was the feature that made CMOS an immediate success when it was
first introduced in the 1960s. Another attribute is that CMOS logic gates can be made
with much fewer transistors than their ECL rival (see Fig. 13.2). Further, in integrated
circuits, each transistor has to be contacted at the top surface, and it is difficult to imagine
a more compact arrangement than that exhibited by CMOS, in which two of the contacts
(source and drain) are so closely aligned with the third contact (gate).

The CMOS industry is huge, and has its own roadmap to chart a path towards ever
smaller devices [1]. Technology nodes have been identified, which roughly refer to the
minimum line-width or line-spacing that can be achieved by a given CMOS technology.
Technologies at 90 nm, 65 nm, and 45 nm have been progressively introduced between
2003 and 2008. Each node number is approximately

√
2-times smaller than the previous

one, so, if this shrinking were achieved in the two dimensions of the surface, the size of
the object would be halved. This pays homage to Moore’s Law, in which the co-founder
of Intel observed in 1965 that the number of transistors per square inch on ICs was
doubling every year [2]. Transistor channel lengths can be considerably smaller than the
technology-node number because of the lateral diffusion of the source and drain implants
under the gate, and because of the halo regions (shown in Fig. 13.1 and discussed in
Section 13.1.7).
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Figure 13.2 Examples of 2-input NOR gates: (a) in CMOS, (b) in HBT emitter-coupled logic
(ECL). The latter has a higher transistor count because, in addition to the actual emitter-coupled
switching element, level shifters and a current source are required. However, it should also be
noted that the ECL gate shown does allow complementary outputs.

The process of systematic shrinking is called scaling; it has driven the high-
performance end of the digital electronics industry for more than 40 years. In fact,
it is the industry’s paradigm: make transistors smaller and circuits denser, then new
applications will appear and jobs and profits will grow. It is not just the lateral physical
dimensions that are scaled, but also the vertical dimensions, the supply voltage, and
the doping density. These changes have to be made in concert in order to preserve the
long-channel operation of the transistor, i.e., to ensure that the charge at the source
end of the channel Qn(0) is controlled predominantly by the vertical field issuing from
the gate. It is becoming increasingly challenging to continue shrinking devices while
simultaneously improving device performance, as we shall see in the following sections
of this chapter.

13.1.2 The ON-current

In CMOS logic the ON-current is the drain current when VGS > VT , i.e., when the
source-end of the channel is in strong inversion. The drain current increases with VDS

to reach a maximum value that we have called IDsat . Over the years, reduction of the
channel length L has been more aggressive than reduction of the supply voltage VDD ,
which sets a maximum limit to the bias voltages VDS and VGS . This is because not
only did a shorter L improve IDsat in physically long devices, (10.38), it also allowed
reduction of the area of the device, thereby improving packing density and reducing
many of the FET’s capacitances (see Chapter 12). The last two attributes still apply,
but L no longer has such a strong effect on IDsat (see (10.48)). This is because L
is already sufficiently small for the lateral field Ex to attain a high-enough value for
velocity saturation to occur over a significant part of the channel. The effect of this
is illustrated in Fig. 10.14, from which it can be seen that the inclusion of velocity
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Figure 13.3 Effect of doubling the mobility from 230 to 460 cm2(Vs)−1 in a CMOS90 N-FET with
channel length of 50 nm. Other model parameters as given in Appendix C.

saturation (SPICE Level 49 model) gives a much smaller increase in IDsat , as L is
reduced, than is predicted by the SPICE Level 1 model, which does not limit the electron
velocity to vsat . However, to attain their saturation velocity, the electrons still have to be
accelerated over the source-side of the channel, so a high mobility is still desirable. The
effect of doubling the mobility in a short-channel N-FET is shown in Fig. 13.3. Besides
the expected increase in ID in the linear regime, there is some enhancement (about 20%)
in IDsat .

Besides increasing the velocity via µeff , the ON-current can also be improved by
increasing the channel charge. The SPICE models of Chapter 10 inform us that this means
increasing Cox and/or the putative overdrive voltage (VGS − VT ). Ways of increasing
Cox , and the implications for leakage of the channel current to the gate, are discussed in
Section 13.1.4.

Because CMOS employs only one power supply, VDD , increasing VGS would mean
increasing VDS , which, as we have already discussed, is limited by the necessity of
keeping Ex � Ey . Additionally, a low value of VDD is desirable for the many portable
electronic products that CMOS has enabled. The alternative option for increasing the
overdrive voltage is to reduce the threshold voltage, but this would have serious con-
sequences for the sub-threshold current, as discussed in Section 13.1.7. In circuitry
as dense as in CMOS microprocessors, where 108 transistors per square centimetre is
common, one cannot afford to have much of a current per FET when the transistor is
OFF (VGS = 0 in an N-FET), otherwise the static power drain would be prohibitive (see
Section 13.1.10). Unwanted power dissipation also occurs during switching, and is also
discussed in Section 13.1.10.
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13.1.3 Channel mobility and strain

Starting with the 90-nm generation of MOSFETs, straining of the Si channel has been
employed to improve the mobility of both electrons and holes. The strain affects the band
structure, and successful strain engineering exploits this to reduce the effective mass
in the desired direction of conduction. The strain is produced by stressing the channel
region in a variety of ways, as we shall reveal.

Hooke’s Law relates the deformation u of a 1-D object to the applied force F by a
material-related force constant K :

�F = K �u . (13.2)

When generalized to a 3-D object, such as a cube of crystalline semiconductor, we
have normal forces and shear forces, and a proliferation of subscripts because of the
possibility of deformations of a given side length in a given face arising from all
the possible normal- and shear-forces. Each force per unit area is a stress and each
component of deformation is a strain. The force required to produce a given strain is
determined by the elastic stiffness constants of the material [3]. In cubic crystals such
as Si and GaAs, there are just three independent such constants. In Si, their magnitudes
range from 64 to 166 GPa, which gives an indication of the immense pressures within
a crystalline solid. Conversely, the strain that results from a given stress is determined
by the elastic compliance constants of the material, which are related to the elastic
stiffness constants.

In the simple 1-D model that we used in Chapter 2 to illustrate how band structure
is related to crystal structure, we saw the importance of the spacing between atoms.
Thus, if this spacing is changed by strain, we can expect changes in band structure
to result. If we are looking for strain to improve the mobility of holes in silicon, for
example, it would be advantageous if the heavy-hole band could be lowered in energy
with respect to the light-hole band.3 Unfortunately, it is not as simple as this in practice.
Both valence bands become so warped by the strain that neither can be considered
‘heavy’ nor ‘light’. Instead, because the strain splits the bands, they are referred to as
the ‘top’ and ‘bottom’ bands. As the holes preferentially occupy the higher band, it is
important that the curvature of the top band be such that the effective mass in the desired
direction of conduction be reduced. One way to achieve this for a <110> channel on a
{001} Si surface in a sub-100 nm device is to apply a uniaxial compressive stress of about
1 GPa to the p-type channel. This is a huge pressure when one realizes that about 0.8 GPa
will break high-strength steel! One way to realize such a high stress is to etch recesses
in the Si where the source and drain should be, and then fill-in by epitaxially growing
Si1−x Gex (see Fig. 13.4). With a Ge mole fraction of x ≈30 %, the more expansive
SiGe puts the Si channel under a compressive stress of the required magnitude. To date
(2009), hole mobility enhancements of up to about four times have been achieved by
using this approach.

For n-channel Si MOSFETs on {001} substrates, a <110> tensile stress induces
a shear strain that is beneficial for electron conduction in this direction. Three notable

3 Recall that lowering in electron energy is equivalent to raising in hole energy.
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Figure 13.4 Partial process flow and TEM cross-sectional view of a strained-Si p-channel
MOSFET using embedded SiGe for the source and drain regions. From Thompson et al. [4, 5],
C© 2004 and 2006 IEEE, reproduced with permission.

changes in the conduction-band structure occur: the six-fold symmetry of the conduction-
band minima is broken, leading to the two [001] valleys moving to lower energies; the
conduction-band minimum moves towards the X-point as the shear strain increases;
the degeneracy of the two conduction-band minima at the X-point (see Fig. 2.9) is
removed [6]. One manifestation of this is that the prolate spheroid constant-energy
surfaces of Fig. 2.12 become scalene spheroids, i.e., the two transverse effective masses
are no longer equal. In other words, with reference to Fig. 2.7, the Brillouin zone is no
longer symmetrical in directions perpendicular to the new kx -direction. The situation is
obviously quite complicated, and is made more so by quantum confinement effects in
the narrow inversion layer. Here, we’ll just illustrate the beneficial effect of breaking the
six-fold symmetry of the conduction bands extant in unstrained bulk material.

Consider Fig. 13.5a, which loosely represents the E-k relationship for Si near the
conduction band edge EC , i.e., the ‘valley’ is steeper in two of the principal directions
than it is in the other, orthogonal, direction. The equivalent constant-energy surfaces in
3-D are shown in Fig. 13.5b. The four spheroids in the horizontal plane are often called
the �4 valleys, and the two in the perpendicular direction are called the �2 valleys.
Here, we consider the silicon channel to be in the surface plane. The tensile strain breaks
the six-fold degeneracy of these valleys, raising the energy of the �4 set, and lowering
the energy of the �2 set, i.e., the bottom of the conduction band is raised for the �4

valleys and is lowered for the �2 valleys (see centre and right panels of Fig. 13.5a). For
a given energy E with respect to the bottom of the conduction band in the �4 valleys,
E − EC for the �2 valleys is increased, so the spheroids become larger. The electrons
naturally seek the lower energy states, so population of the �2 valleys is favoured.
If the in-plane effective mass in the �2 valleys remains at m∗

t , which we note from
Table 2.1 is considerably less than the longitudinal effective mass m∗

l , then the electron
mobility in the channel is increased. As mentioned above, the effective masses are
changed by the strain, but to get an idea of the enhancement in µe that might be possible,
consider the conductivity effective mass in (5.36). Based on the equal probabilities of
occupation of the six equivalent conduction bands, a value of m∗

e,COND = 0.26m0 was
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Figure 13.5 (a) Energy-wavevector relations for a material with an effective mass in one direction
that is different from the effective mass in the two orthogonal directions. Left: all six valleys have
the same E-k relationship. Centre: the �4 valleys (see (b) below) are raised in energy. Right: the
�2 valleys are lowered in energy. (b) The constant-energy surfaces for the energy (E − EC )
indicated in (a). With respect to the unstrained case (shaded spheroids), the in-plane spheroids
are reduced and the out-of-plane spheroids are enlarged.

estimated. If all the electrons could now locate in the �2 valleys, then we would have
m∗

e,COND = m∗
t = 0.19m0, i.e., an improvement in mobility of about 37%.

A further bonus is that, whereas electron scattering is equally probable between all
six valleys in unstrained silicon, now an energy change is needed to scatter from a �2

valley to a �4 valley. Thus, the in-plane electron mobility may be further increased.
Strain engineering to improve Si MOSFET performance is a very active area of

research and development. One stressor is a thin layer of silicon nitride, which is
deposited by plasma-enhanced CVD4 over the completed FET. This stress liner con-
forms to the FET as shown in Fig. 13.6, and, depending on the deposition conditions,
can be imbued with either a tensile or a compressive stress. For N-FETs a tensile liner is

4 Chemical Vapour Deposition.
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Figure 13.6 Dual stress liner process architecture with tensile and compressive silicon nitride
layers deposited by plasma-enhanced CVD. From Thompson et al. [4, 5], C© 2004 and 2006 IEEE,

reproduced with permission.

used, and its adhesion to the source and drain allows its inherent tensile stress to stretch
the channel. The contact area in the former regions is much greater than the channel
area, so any strain relaxation that takes place occurs mainly outside of the channel. This
means that this method of stressing works well if the channel is short, but it also means
that it is not easily scaleable. In fact, at the 45-nm node, the source and drain areas
may be insufficient to ‘anchor’ the stress liners. An alternative stressor would then be
needed. Creating a trench and filling it with a material that would be compressed by the
surrounding silicon is one possibility under investigation at present.

It is amazing that such large and different stresses can be applied to such tiny structures
that are in such close proximity. The influence of the tensile stress in an N-FET on the
compressive stress of a neighbouring P-FET, for example, is likely to become a necessary
consideration in layout design, if, indeed, it is not already so.

13.1.4 Oxide capacitance and high-k dielectrics

Increasing Cox puts more charge in the channel for a given VGS and, consequently,
increases ID . By the 90-nm technology node the oxide thickness had been reduced to
≈2 nm, leaving little room for further shrinking as a means of increasing Cox . Apart from
the difficulties involved in producing thinner films to acceptable standards of integrity
and uniformity, there is the problem of increased leakage to the gate of drain-intended
current, as discussed in Section 13.1.6. Traditionally, the gate oxide has been SiO2:
being silicon’s native oxide it is obviously compatible with the semiconductor. Further,
the interface between the two materials is extremely well understood, and techniques
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have been developed to effectively passivate the interface [7, Section 6.5.13]. However,
a drawback to SiO2 is its rather low relative permittivity of 3.9. Over the years, nitrogen
has been incorporated in the oxide to raise the relative permittivity to 4–5, but, clearly,
a higher permittivity dielectric would be helpful. Incorporation of a higher-k dielectric5

into the CMOS process is another very active area of research and development. At
the time of writing (2009), only Intel of the big chip manufacturers has included a
new gate-dielectric at the 45-nm technology node, but, undoubtedly, others will follow.
The Si/SiO2 interface is preserved, but the dielectric is thickened by the addition of an
oxide derived from hafnium, and probably including some nitrogen. The overall relative
permittivity is ≈15–20. With respect to an oxide of pure silica, this allows a given
oxide capacitance per unit area to be achieved with a thicker oxide, thereby offering
the possibility of reducing the gate leakage current (see Section 13.1.6). However, the
ON-current would be more directly improved by the new dielectric if Cox was actually
made higher than before. This is accomplished by choosing the new dielectric’s thickness
such that

thigh−k < tsilica
εhigh−k

εsilica
. (13.3)

The case for high-k dielectrics is easily stated, but it should be appreciated that the actual
replacement of the traditional, tried-and-tested, silica dielectric has posed considerable
difficulties for the industry.

13.1.5 Metal gates and poly-silicon capacitance

The industry is moving towards a new gate stack, in which a metallic gate electrode is
used with the high-k dielectric. This represents another very significant change for the
silicon-processing industry, as highly doped polycrystalline silicon gates have been used
in CMOS for decades. Originally, in the 1960s, gates were made from aluminium, but
this metal’s penetration into the underlying silicon dioxide, during thermal treatments
later in the device’s processing, prevented use of the metal gate as a mask to facilitate
the self-alignment of the source and drain regions to the gate. Polycrystalline silicon
overcame this problem. However, having a semiconductor for the gate means that there
is some depletion at the gate/oxide surface (see Fig. 13.7). This results in an additional
potential drop in the device, thus, (10.14) is modified to

VG B − V f b = ψpoly + ψox + ψs . (13.4)

In other words, ψs , which determines the charge in the channel, experiences less of
VG B than it would otherwise. In earlier generations of CMOS this was not a particularly
important issue, but now, when material-modification is being increasingly addressed as
a means of maintaining the momentum in device-performance enhancement, it needs to
be dealt with. Hence, the return of the industry to metal gates, which will need to be less
reactive than aluminium, or be deposited later in the fabrication process, perhaps after

5 The ‘k’ in high-k refers to the symbol often used for dielectric constant, which is an earlier term for relative
permittivity.
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Figure 13.7 Band-bending in the polysilicon gate, and the extra capacitance it causes.

the use of a sacrificial polysilicon gate to allow self-alignment of the source and drain.
Nickel and titanium are two possible metals. Co-deposition of metals such as these opens
up the possibility of achieving a range of work functions, with which threshold-voltage
control could be achieved via variation of V f b. The opportunity of being able to vary VT

across a chip would be welcomed by IC designers.

13.1.6 Gate leakage current

The steady reduction in oxide thickness as part of the scaling process has led to an
increase in the flow of electrons from the channel (and from the overlapped part of the
drain) in an N-FET to the gate. This tunnelling current detracts from the drain current,
hence its name of leakage current. The transport mechanism of tunnelling is considered
in detail in Section 5.7.3. Expressions for the tunnel current are derived for the cases
where the electrons in the channel form a ‘classical’ 2-D sheet, as we have considered
thus far, and where the electrons are confined to quasi-bound states, as discussed in
Section 13.1.8. Here we consider the former case, for which the tunnel current density
is given by (5.63), which is of the form

Jtunn =
∫

E

q

h
n2D(E)T (E) d E , (13.5)

where n2D(E) is the electron density of the 2-D sheet of electrons at the
oxide/semiconductor interface, and T (E) is the tunnelling transmission probability. If
the tunnelling barrier is approximated as being rectangular in shape, as shown in Fig. 5.8,
then there is an analytical expression for T (E) (see (5.54)). This expression contains, in



P1: Trim: 174mm × 247mm Top: 0.498in Gutter: 0.664in

pulfrey_cup cuuk824/Pulfrey 978 0 521 51460 6 December 25, 2009 21:51

13.1 Si CMOS 235

its denominator, hyperbolic functions that involve the thickness of the tunnelling barrier
tox , the electron effective mass in the oxide m∗

ox , and the height of the potential barrier.

EC,ox − EC (0) = χSi − χox , (13.6)

where EC (0) ≡ U1 is shown in Fig. 5.8, and the χ ’s are electron affinities. These depen-
dencies are captured in (5.56), which, using the notation of (13.6), is

T ≈ exp

[
−2tox

�

√
2m∗

ox (EC,ox − E)

]
. (13.7)

The above equations highlight the fact that tunnelling depends not only on the thick-
ness of the barrier, but also on its height. The latter demands that, for low tunnelling,
the oxide must have a low electron affinity. For silica, χ = 0.9 eV, whereas for hafnia
χ ≈ 2.9 eV. It’s reasonable to assume that the electron affinity of present ‘high-k’ oxides
is somewhere between these limits. Let us use χ as a variable and determine the reduc-
tion in tunnel current commensurate with a given increase in Cox . For the baseline Cox

we assume an oxide of silica with tox = 1.75 nm. We also assume a relative permittivity
for the high-k dielectric of four times that of silica.6 Figure 13.8 shows the ratio of
tunnel current in the high-k case to that in the silica case as a function of χ for the
high-k dielectric. It is clear from the figure that a 2–3 order-of-magnitude reduction in
tunnel current can be achieved simultaneously with a 50% increase in Cox , provided the
electron affinity of the high-k dielectric does not exceed about 1.8 eV.7

13.1.7 Threshold voltage: the short-channel effect

From the equations developed in Section 10.4.5 for the ON-current, and in Section 10.5
for the sub-threshold current, it is clear that there is a limit to how low VT can be reduced
in practice. For example, if we take ID(ONset) to be the current at the onset of the ON
state, i.e., when VGS = VT ; and we take ID(OFF) as the current in the fully OFF state
when VGS = 0, then the OFF/ONset current ratio is

ID(OFF)

ID(ONset)
= exp

−VT

mVth
. (13.8)

Thus, if an OFF/ONset current ratio of 10−4 is required, then, taking m at its optimum
value of unity indicates that VT must not be less than about 0.24 V. Therefore, the issue
of threshold-voltage control is critical, and it brings us to a discussion of factors not
previously introduced in Chapter 10, but which can severely affect VT if they are not
dealt with. An illustration of this is seen in Fig. 13.9 and Fig. 13.10. These figures
examine the effects on both the ON- and OFF-currents of the depth y j of the source and
drain regions, and of the length L of the channel. To bring y j into the calculations, the

6 A homogeneous hafnia dielectric would have a relative permittivity of about 5 times that of silica.
7 It must be noted that our calculation is very sensitive to the values used for the effective masses, which are

not well-known. One might even question the use of the effective-mass concept when considering transport
through such thin, and non-crystalline, materials. Here, we used 0.91, 0.1, and 0.3 for the effective masses
m∗/m0 of Si, HfO2 and SiO2, respectively.
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Figure 13.8 Ratio of tunnel current in a high-k dielectric to that in silica as a function of the
electron affinity of the high-k dielectric. The high-k dielectric is taken to have a relative
permittivity that is four times that of silica. The top curve is for an improvement in Cox of 100%,
and the bottom curve is for an improvement of 50%. The parameter values are as given in the
caption to Fig. 5.8, unless otherwise stated. (EC,Si − EF ) was taken to be 50 meV.

full set of equations (5.24) in 2-D was solved numerically. The solution for the case of
y j ≡ 0 was obtained from the PSP model (10.27).

Consider first the gate characteristic: the bottom three curves show that, for a given
channel length, the sub-threshold current increases dramatically as the depth of the source
and drain regions is increased. The effect is indicative of a reduction in the threshold
voltage. Compare now the two curves at y j = 30 nm, and observe that shrinking L from
100 to 50 nm also effectively reduces the threshold voltage.

Turning now to the drain characteristic, note that the effect of increasing y j is to
enhance the drain ON-current as VDS is increased. This effect is not to be confused
with channel-length modulation, which occurs in longer devices after VDS is increased
beyond the ‘pinch-off’ value.8 Current saturation in FETs with sub-micron channel
lengths is more due to velocity saturation than to pinch-off (see Section 10.4.5). The
phenomenon seen in Fig. 13.10 is indicative of VT being influenced by VDS . It becomes
apparent over the entire range of the drain characteristic when L is reduced to ≈50 nm.

The above observations regarding the gate and drain characteristics can be quantified
by a reduction in the threshold voltage as either the junction depth is increased, or as

8 In a long-channel device, if VDS is increased beyond the value at which pinch-off occurs, the pinch-off
point moves further away from the drain as the depletion region around the drain thickens. This has the
effect of shortening the remaining portion of the channel that is still in strong inversion.
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Figure 13.9 Gate characteristics for various combinations of channel length L/source-drain
junction depth y j (both in nm). Unless otherwise stated the parameters are as listed in Appendix
C for a CMOS90 N-FET. The bottom curve (solid line) is from the PSP model (10.27) and the
other curves are from (5.24), using the Drift-Diffusion Approximation implemented in MEDICI.

the length of an already short channel is decreased. This phenomenon of an increase
in drain current due to factors not included in the long-channel model is known as the
short-channel effect.

Basically, the short-channel effect is an electrostatic effect. Field lines emanate from
the positively biased drain, and must terminate on negative charges somewhere in the
transistor. The p-type substrate provides suitable sites, leading to a space-charge region
extending out from the drain. This region is wider than the space-charge region around
the source because of the greater reverse bias at the drain/body np-junction. The drain-
related space-charge at some point x ′ increases the surface potential at x ′; this increases
|Qn(x ′)|, and possibly Ex (x ′). Both effects lead to an increase in ID . This particular
aspect of the short-channel effect is often called charge sharing. The name comes from
the fact that the total space charge (depletion) at some point x ′ is now determined by
both the gate and drain potentials. A given ψs(x ′) can now be achieved with a lower VGS

than would be needed if there were no depletion due to VDS .
As L decreases, the space-charge region from the drain progressively encroaches on

the source. Eventually, ψs(0) is affected by VDS . The effect on ID is direct because ψs(0)
sets the height of the potential barrier at the source/channel junction, i.e., it controls
the electron flow into the channel. This aspect of the short-channel effect is called
drain-induced barrier lowering (DIBL).
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Figure 13.10 Drain characteristics for the same combinations of parameters given in Fig. 13.9.

As noted earlier in this subsection, the effects of charge-sharing and DIBL can be
captured by defining an effective threshold voltage

VT,eff = VT + �VT (y j , L , VDS) . (13.9)

The electrostatic interaction between the drain and the channel via the depletion region
in the body can be viewed as a capacitive phenomenon, as illustrated in Fig. 13.11.
Therefore, the most obvious way to reduce |�VT | is to reduce the size of the drain-
source capacitor. As the sidewall of the np-junction defines one of the lengths of this
‘plate’ of the capacitor, then it would be helpful to reduce y j . The simulation results of
Fig. 13.9 and Fig. 13.10 confirm this. In fact, y j has been shrinking over the years, going
from about 40 nm at the 130-nm node, to about 15 nm at the 45-nm node. One drawback
to reducing y j is that the lateral access resistance to the channel from the source and
drain contacts is increased. For this reason, only the part of the source and drain closest
to the channel is thinned. These shallow source- and drain-extensions are evident in
Fig. 13.1.

Another way of reducing the influence of the drain on ψs(0) would be to shield
the source from the field issuing from the drain. This could be done by raising NA

throughout the body. However, a high doping density at the semiconductor surface
would lead to an unacceptably high VT . The present industry solution is to use a non-
uniform doping profile NA(x, y). The doping is increased in the y-direction: the desired
high doping is achieved deeper into the substrate using fast-diffusing dopants such as
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Figure 13.11 Illustrating how the drain-source capacitance abets the gate-source capacitance in
determining the potential ψs at the source, thereby giving rise to the short-channel effect.
Adapted from a figure kindly supplied by Alvin Loke, AMD.

B, As and P, whereas doping of the sensitive surface region is accomplished by more
lightly doping using slower diffusants such as In and Sb. The resulting doping profile is
called retrograde. In the x-direction, NA is increased only close to the source and drain
junctions. The feature is shown in Fig. 13.1 and is called halo doping. Another name
for these highly doped regions is pocket implants.

The three features of y j reduction, retrograde doping and pocket implants, have
proved sufficient to control the short-channel effect, at least down to the 45-nm node.
Future schemes may involve multiple gates, of which a ‘wrap-around’ gate would be the
ultimate solution (see Chapter 18).

13.1.8 Threshold voltage: a quantum-mechanical effect

Recall that one of the trends in scaling has been to increase the doping density in the body
to prevent VT from getting too small due to reductions in tox . For high substrate doping
densities, the potential profile in the y-direction of the body becomes steep enough for
the electrons to be restricted to a very shallow region at the oxide/semiconductor surface.
Of course, we recognized this before when we invoked the channel-sheet approximation,
however, the added feature here is that this restriction creates a ‘potential well’. If the
sides of this potential well are high enough, the conduction band splits up into sub-
bands, as described in detail in Section 11.3.1. The situation is illustrated in Fig. 13.12.
The sub-bands are at higher energies than EC , and, as there is no longer a continuum of
energy levels near the quasi-Fermi level, it takes more energy to populate the quasi-bound
states,9 so VT is raised slightly.

9 The states are properly termed ‘quasi-bound’, rather than just ‘bound’, because the electrons in them are
not completely confined. They must escape if there is to be a drain current.
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Figure 13.12 Illustration of how the fact that the centroid of charge in the first conduction
sub-band E1 is distal from the interface leads to an increase in the effective oxide thickness.

An appreciation of the effect can be gained by considering the charge distribution in
the first sub-band. As shown in Fig. 11.8, the centroid of charge is near the middle of
the well, i.e., distal from the actual semiconductor surface. This increase in separation
between the channel charge and the gate electrode can be viewed as an increase in oxide
thickness. Thus, Cox is reduced and VT is raised. The magnitude of the effect is examined
in Exercise 13.2.

13.1.9 Silicon-on Insulator FET

The Si MOSFET that we have discussed so far is a bulk-CMOS FET; it is by far the
dominant transistor in high-performance CMOS circuitry. Here, we briefly mention the
silicon-on-insulator (SOI) FET, which has some interesting attributes.10 In the cross-
section shown in the top part of Fig. 13.13, a layer of silicon oxide is implanted into
the silcon wafer, and the CMOS FETs are then defined in the overlying surface layer of
silicon. Understandably, the oxygen implant disturbs the crystallinity of the Si surface
layer, and it is costly to recover the perfection of this critical region. Presently, a more
widely used way of forming an SOI structure is to rely on van der Waals forces to bond
one Si wafer to the oxide-coated surface of another Si wafer (wafer B), and then to reduce
the thickness of wafer B to end up with a structure similar to that shown in Fig. 13.13.
This process is known as ‘Smart Cut’ [7, p. 146], and is also relatively expensive.

10 Both AMD and IBM use SOI in some of their high-performance offerings.
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Figure 13.13 Silicon-on-insulator (SOI) CMOS. The top part is a cross-section of a thin-body
device. The bottom part shows the field lines from a 2-D solution to Laplace’s Equation for an
arrangement similar to that of the N-FET. Specifically, the simulation is for a 90-nm channel in a
16-nm Si body, with 2-nm oxides and gates on the top and on the bottom. The top figure is
courtesy of Alvin Loke, AMD, and the bottom figure is courtesy of Daryl Van Vorst, UBC.

The source and drain regions reach through to the buried oxide, so there is no ‘floor’
component of parasitic capacitance at the source/body and drain/body np-junctions. An
additional speed improvement is possible from the dynamic threshold-voltage effect,
which is a consequence of the body of the transistor being isolated from the substrate.
When the FET is turned on by a positively increasing VGS , the potential VB of the
floating body also rises, momentarily augmenting the forward bias across the source-
channel junction, and increasing the current.

Another useful property can result if both the upper silicon layer and the buried oxide
are thin, and if the underlying substrate is heavily doped. Under these circumstances, the
field issuing from the drain preferentially penetrates the two thin oxides and terminates
on the gate and the substrate, as shown in the bottom part of Fig. 13.13. Thus, the potential
ψs(0) at the source end of the channel is screened from the applied drain potential VD ,
and the short-channel effect is reduced. The thin oxide/substrate combination acts like
a ‘bottom’ gate, making the SOI FET a precursor of the anticipated multiple gate FET,
one example of which is the FINFET [8].

A truly ‘three-terminal’ FET, i.e., one with no body-effects to be concerned with,
would result if the silicon body layer could be made sufficiently thin for it to be fully
depleted. However, obtaining such a thin semiconducting layer with reproducible and
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Figure 13.14 Leakage and off currents: (a) 1. oxide tunnelling; 2. sub-threshold conduction; 3.
gate-induced drain leakage; 4. drift of minority carriers across the reverse-biased drain/body
junction. (b) Detail of gate-induced drain leakage GIDL.

useful properties is proving difficult. In the meantime, the insulating layer of partially
depleted SOI FETs isolates devices from each other, which is good for RF circuitry. It
can also help de-couple noisy logic blocks from sensitive analogue circuitry, which is
good in mixed-signal applications.

13.1.10 Power dissipation

The various DC leakage and sub-threshold currents in an N-FET are sketched in
Fig. 13.14. When the device is ON, a high drain current is required and, ideally, this will
be the current supplied by the source, i.e., the current drawn from the power supply. If
the latter is more than ID , it is indicative of the presence of current leakage paths in
the transistor. Leakage to the gate via tunnelling is one such path (see Section 13.1.6).
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One way to mitigate this effect is to use thin oxides only where they are absolutely
necessary, e.g., for the transistors in the core of a microprocessor. For other transistors,
such as those in the input/output parts of the chip, a thicker oxide is used. Other possi-
bilities for leakage are via the substrate. One such component is the usual current in a
reverse-biased np-junction, while another is referred to as gate-induced drain leakage
(GIDL). The latter is due to band-to-band tunnelling in the depletion region where the
gate overlaps the drain (see Fig. 13.14b). The mechanism is that of Zener breakdown,
as occurs in np diodes with heavy doping on either side of the junction. GIDL has
assumed importance because of the very high fields arising from the heavy doping of the
pocket implant. As VG B increases, the bands become more bent, and the leakage current
increases.

The above leakage currents exist when the transistor is ON, i.e., when VGS > VT .
Current can also be drawn from the power supply when the transistor is OFF, i.e.,
when VGS < VT , but VDS > 0. Such currents are the junction leakage current, and the
sub-threshold current due to injection from the source. The latter is non-zero because of
the influence of the field from the drain on ψs(0), as discussed above.

As we have mentioned before, it is necessary in highly integrated circuitry to make the
OFF/ON ratio as small as possible. Ideally, switching between OFF and ON would be
marked by a vertical transition in the ID − VGS plane. In fact, the transition has a finite
slope (see Fig. 13.9). The usual metric for this transition is the inverse sub-threshold
slope: it is the change in VGS needed to reduce ID by a factor of 10. From (10.55)

S =
(

∂ log10 ID

∂VGS

)−1

≡ 2.303m Vth . (13.10)

Evidently, in this type of transistor, the minimum value of S is about 60 mV/decade.
In practical MOSFETs, values are slightly higher than this (closer to 100 mV/decade)
because m is greater than its ideal value of unity. Recall that m(0) = 1 + Cb(0)/Cox ,
so any increase in the ionic space charge in the substrate under the source-end of the
channel will raise Cb(0) and, consequently, increase m. This is why Fig. 13.9 shows a
significant degradation (increase) in S when L is reduced. It is further evidence of the
need to control the short-channel effect.

Dynamic power dissipation
A basic CMOS switch is shown in Fig. 13.15a: it comprises a power supply, an inverter,
and two capacitors, C+ and C−, which, together, constitute the total capacitance CX at
the output node. CX represents the intrinsic and extrinsic capacitances of the transistors
in both the logic gate and in the element that it drives, and, also, the interconnect
capacitance. CX is charged through the P-FET and discharged through the N-FET.11 The
switching events over several clock periods are shown in Fig. 13.15b. During discharge

11 For these processes to occur over similar time periods it helps if the two transistors have similar saturation
currents, e.g., using LEVEL 1 equations ((10.34)), |VT | and the ratio Zµ/L should be similar for each
transistor.
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Figure 13.15 Switching in a simple CMOS logic gate. (a) Equivalent circuit. (b) Voltage and
current waveforms.

of the capacitor C−, vI N is HI and the P-FET is OFF. The output goes LO and C+

charges up. The current drawn from the power supply during this event is

iP S = C+ ∂

∂t
(VDD − vOU T ) . (13.11)

The average power dissipated during this half-period T/2 is

Pav = 1

T/2

∫ T/2

0
(VDD − vOU T )iP S dt

= 2 f

∫ VDD

0
(VDD − vOU T )C+ d(VDD − vOU T )

= f C+V 2
DD , (13.12)

where f is the clock frequency. Over the next half-period, C+ is discharged and C− is
charged, thus, over one clock period, the average power dissipated per gate is

Pav = f V 2
DD(C+ + C−) = f V 2

DDCX . (13.13)

This equation highlights the importance of reducing the power-supply voltage as clock
frequencies increase.

Static power dissipation
Recall that when a MOSFET is supposedly OFF (VGS = 0), there can be a sub-threshold
current if VDS > 0. From the description of sub-threshold current in Section 10.5, it
follows that the static power dissipation per inverter is

P(static) ≈ VDDID,sub-threshold . (13.14)

In a CMOS technology capable of placing 108 transistors per cm2, it is easy to appreciate
how minuscule static power dissipation in a single transistor can become a major concern
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Figure 13.16 Large-signal equivalent circuit for the MOSFET.

at the chip level. The continued control of it via suppression of the short-channel effect,
principally DIBL, is vital for the progression to future technology nodes.

13.1.11 Large-signal equivalent-circuit model

To capture the effect of switching, the parasitic resistances and the intrinsic and extrinsic
capacitances of the MOSFET must be added to the DC equivalent circuit of Fig. 10.16.

The source and drain resistances arise mainly from the lateral path between the
contact metallization and the channel. Obviously, reducing the junction depth y j to
combat the short-channel effect is not helpful in reducing RS and RD . In practice, the
source and drain regions are thickened after the obligatory narrow region near to the
channel (see Fig. 13.1). The gate resistance shown in the equivalent circuit of Fig. 13.16
is that of the gate metallization. The full suite of intrinsic and extrinsic capacitances
described in Section 12.2 are represented by appropriate capacitors. Also shown is the
gate/body intrinsic capacitance, which serves to remind us that we neglected body-related
capacitances in Chapter 12.12

Finally, the single current source of the DC circuit in Fig. 10.16 has been expanded
into sources representing the ON current, the sub-threshold current, and the tunnelling
currents to the gate.

12 Note that because of the inexorable scaling of the transistor, its capacitances can now be smaller than the
capacitances of the wiring that connects devices together. To reduce this latter capacitance, low-k dielectric
materials are used between the wiring levels of modern, high-performance ICs.
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13.2 Emitter-coupled logic

For reasons given elsewhere in this chapter, CMOS is unrivalled when it comes to
ultra-dense digital circuitry. However, if the issue is one of raw speed only, then
emitter-coupled logic (ECL), fashioned from high-performance HBTs, can outperform
CMOS. The price paid for this speed advantage is a higher transistor count per gate (see
Fig. 13.2b), and a higher static power drain.

Whereas the ECL NOR gate of Fig. 13.2b has the same number (4) of switching
transistors as the comparable CMOS gate shown in Fig. 13.2a, it requires additional
circuitry to provide the current bias, and to shift the level of the output signal so that it is
appropriate for driving other gates. The current-bias circuitry provides a constant current
that is switched between the main, emitter-coupled transistors of the gate, depending
on which of these transistors is ON (according to the logic levels of the input signals).
Because in HBTs IC increases exponentially with input bias, it doesn’t take much
change in VB E to switch a large current.13 Further, because charge flow in an HBT is not
constricted by a narrow channel, the current can be large. Thus, a given charge can be
sourced or sunk in a very short time. As the current is always present in one branch or
another of the circuit, the static power drain is large. The speed advantage of ECL can
only be realized if the transistors are biased in the active region when they are ON, and
not in the saturation regime.

To illustrate the drawback of switching from the saturation regime in HBT digital
circuits, consider the example of a simple inverter using resistor-transistor logic (RTL),
as shown in Fig. 13.17. It can be seen that IC at the HI bias point does not increase
with IB , but is limited by the voltage drop across the load resistor RL . Thus, ‘saturation’
in an HBT is a circuit phenomenon, and does not refer to the constant-current portion
of the actual transistor characteristic, which is the active regime. In saturation, both
junctions are forward biased, so there is a large concentration of excess electrons in the
base.14 Turning the logic gate OFF is initiated by switching the input voltage VB E to zero
(see Fig. 13.18a). The excess carriers now start to flow out of the base, and there is some
net recombination now that the supply of minority carriers from the emitter and collector
has been turned off. The minority carrier concentrations at the edges of the quasi-neutral
base depend on the actual applied-voltage drop across the junctions (see (6.29)). Put
another way, Vaj depends logarithmically on the carrier concentrations. Thus, as these
carriers exit the base, the actual junction biases change only slowly. Therefore, the
collector current maintains its value. The base current is also approximately constant,
but at a negative value determined by Vaj,B E/RB , where RB is the resistance in the base
lead (see Fig. 13.19). Only when the excess electron concentration at the collector edge
of the base quasi-neutral region has been reduced to zero (at time t3 in Fig. 13.18b)
does iC start to fall towards its cut-off value, which characterizes the OFF, or logic-LO,

13 As discussed in Section 10.5, �V = 0.24 V will cause a 10 000-fold change in current.
14 Recall from Chapter 6 that the base remains quasi-neutral, so there are also many excess holes present in

the base in the saturation mode.
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Figure 13.17 Determination of the operating point, using a simple RTL inverter as an example
(see inset), by the superposition of the transistor’s collector-current characteristic and the
resistor’s load line. From Pulfrey and Tarr [9].

state.15 At this time, iB finally inclines towards the zero value that is to be expected when
VB E = 0.

In the sequence of excess-electron profiles shown in Fig. 13.18b, the negative slope
near the emitter edge is indicative of the diffusive outflow to the emitter lead. Also
shown is the initial excess electron profile for a logic HI state in the active regime. As
the excess electron concentration at WB is already zero, because of the reverse-biased
base/collector junction, iC starts to decay immediately after VB E is switched to zero.
Thus, the delay when switching from the saturation state can be viewed as the time taken
to remove the excess charge shown by the shaded region in Fig. 13.18b.

13.2.1 Large-signal equivalent-circuit model

The large-signal equivalent-circuit model for an HBT is shown in Fig. 13.19. Capacitors
representing all the various capacitances discussed in Section 12.3 have been added
to the dc equivalent circuit of Fig. 9.9. Diodes representing the back-injection and

15 The symbol iC is used to indicate a time-dependent collector current. IC is a dc current.
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Figure 13.18 Switching out of the saturation mode. (a) Voltage and current waveforms.
(b) Evolution of the excess electron profile in the base during switching. The profile for biasing
in the active mode of operation is also shown (stippled line).
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Figure 13.19 Large-signal equivalent circuit of the HBT. The collector current source is from
Fig. 9.9.

base-recombination components of the base current are also shown. By providing a
set of diodes for each junction, the circuit can be used for all modes of operation
of the HBT.

Exercises

13.1 Tensile strain can improve the electron mobility in Si N-FETs by lowering the
energy of the �2 valleys with respect to the �4 valleys (see Fig. 13.5).
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If a particular stress results in 80% of the electrons residing in the �2 valleys,
estimate the percentage improvement in electron mobility with respect to the
unstrained case.

13.2 For a CMOS65 N-FET the band bending in the semiconductor is steep enough that
the potential-energy profile near the silicon/oxide interface can be approximated
as a rectangular potential well of infinite height.

All the electrons can be taken as residing in the first energy sub-band (see
Fig. 13.12), which is located 0.377 eV above the conduction-band edge. The
electron effective mass can be taken as m0.
(a) Estimate the percentage change in effective oxide capacitance due to consid-

eration of this electron confinement.
(b) Estimate the change in threshold voltage due to this quantum-mechanical

effect.
13.3 In a particular CMOS technology, Cox can be taken as 2 × 109ε0 F m−2, and the

electron affinity of the semiconductor Si can be taken as 4 eV. Two dielectrics,
Oxide P and Oxide Q, are being considered as replacement gate oxides to double
Cox . The electron affinity and relative permittivity for Oxide P are 1 eV and 8,
respectively, whereas the corresponding values for Oxide Q are 4 eV and 16.

Which material would make the more practical dielectric, and why?
13.4 For a symmetrical, rectangular potential barrier of thickness d and height U2 the

tunnelling transmission probability can be approximated by (5.56)

T ≈ exp

[
−2d

�

√
2m∗(U2 − E)

]
, (13.15)

where the electron effective mass m∗ is assumed to be the same in all regions of
the structure. Assume that this situation applies to tunnelling through the oxide
in a silicon-gate Si MOSFET.

In Si CMOS technology the gate oxide has been silica (εr = 3.9 and electron
affinity χ = 0.9 eV) but the change is being made to a hafnium-silicon oxynitride,
for which we guess the relative permittivity to be εr ≈ 4 × 3.9, and the electron
affinity to be χ = 2.9 eV.

What thickness of hafnia is needed for T (E = 0.2 eV) to be equal to that for
silica of thickness 2 nm?

13.5 Compute the gate leakage current due to tunnelling from a continuum of states
for the two insulators considered in the previous question at VG B = 1 V.

13.6 A microprocessor made from CMOS65 FETs operates at a clock frequency of
3 GHz. What percentage of transistors on the chip would need to be switching
simultaneously if the static power dissipation were to equal the dynamic power
dissipation?

13.7 An Npn GaAs-based HBT has a quasi-neutral basewidth that is much shorter than
the minority-carrier diffusion length, but that is much greater than any changes
in depletion-region widths that may occur on switching. The transistor is biased
in the saturation regime, with VB E slightly greater than VBC .
(a) Sketch the electron concentration profile in the quasi-neutral base.
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(b) On the same sketch, add a line showing the electron concentration profile at
the instant the collector current would begin to decrease after VB E had been
reduced to zero.

(c) Let the base doping density be NA = 1019 cm−3, the quasi-neutral basewidth
be 50 nm, and the cross-sectional area be 2 µm ×10 µm. Consider the transis-
tor to be in the common-emitter configuration with VB E = 1.3 V. The condi-
tions are such that the transistor is in the saturation regime with VBC = 1.2 V.

On switching-OFF the transistor, assume that electrons are removed from the
quasi-neutral base only by recombination.

How long does it take before the collector current begins to change?
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14 Transistors for high frequencies

The large-signal models of Fig. 13.16 and Fig. 13.19 are to be used when considering
DC and switching operations. High-frequency operation is governed by the small-signal
performance of transistors. It is insightful, and computationally efficient, to develop a
small-signal model of the transistor by linearizing the large-signal model. Our approach
is to linearize via a Taylor series expansion, and then manipulate the resulting equivalent
circuit so that it can be used to define and evaluate two important high-frequency metrics:
fT and fmax.

Small-signal operation is illustrated in Fig. 14.1, which shows a simple amplifier. The
base-emitter DC bias is supplied from the power-supply VB B via a resistor, and the small
AC signal is supplied from vin via a capacitor. The transistor is of the bipolar variety,
in recognition of the fact that bipolar transistors (BTs) have traditionally been dominant
in high-frequency applications. This dominance has been due principally to the BT’s
transconductance being inherently superior to that of FETs, as we will show later in the
chapter.

Presently, the world record for fT is 710 GHz [1], and is held by an HBT based on
the sleek-looking device shown in Fig. 14.2. However, nowadays, FETs are encroaching
into the high-frequency domain: HEMTs using high-mobility semiconductors based
on GaAs and InP can yield devices with very high transconductance; and MOSFETs
employing silicon’s matchless technology can yield very small devices, for which the
capacitance is very low. Because of this involvement of both transistor types (bipolar
and field-effect) in high-frequency circuits, we start the chapter with the development of
a generic small-signal equivalent circuit, before going on to discuss the particular merits
of each transistor type.

14.1 Quasi-static analysis

In this chapter the analysis we perform is of the quasi-static variety. The meaning of
this was presented in Section 12.1 during the defining of capacitance. Recall that the
implication of this type of analysis is that information on the behaviour of the device
cannot be obtained for time periods approaching that of the transit time of charge
carriers within the device. As we indicated in Section 12.1, this is not a particularly
severe restriction. However, if one does need to know the current in a device over
periods of 10s–100s of femtoseconds, for example, then it is necessary to perform a

251
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Figure 14.1 Simple amplifier circuit showing a small-signal AC input vin, and the DC biasing of
the input via VB B .

Figure 14.2 The record-breaking HBT from the University of Illinois. Reused with permission
from Walid Hafez and Milton Feng, Applied Physics Letters, 86, 152101 (2005) [2]. Copyright
2005, American Institute of Physics.

non-quasi-static analysis. This involves the solution of the full, time-dependent version
of our master equation (5.24). A sub-set example of this is the Hydrodynamic Equa-
tions (5.22). The presence of time derivatives and time dependencies in these equations
makes their exact solution difficult to obtain. Even using a simple device structure, and
after making many assumptions, obtaining an analytical solution is a lengthy proce-
dure [3]. Generally, numerical methods are required to carry out a full, non-quasi-static
analysis.

In the following, we rely on the quasi-static approach; the implications being that the
charge at any point r in the device, at any time t ′, is determined by the instantaneous
value of the applied voltages, irrespective of the previous history of the biasing. It’s
worth emphasizing this by expressing it in equation form:

q(r, t ′) = f (Vterminals, t ′)

�= f (Vterminals, t < t ′) . (14.1)
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14.2 The generic small-signal model

Recall the generic transistor of Fig. 12.1, and let us use the notation

i J (t) = IJ + i j (t) J, j = 1, 2, 3 , (14.2)

where i J is the total current at one of the three terminals J of a transistor, and comprises
a DC component IJ , and a small-signal AC component i j .

Let us take J, j = 2 as an example, and take it to represent either the collector current
in an HBT or the drain current in a FET. Further, let us use terminal 1 (the emitter or
source) as the reference for potential. Thus, using the quasi-static approximation, the
total current i2 depends on the instantaneous values of the terminal voltages V21 + v21

and V31 + v31.
The next step is to linearize the expression for the current by taking the Taylor series

expansion for the total current i2 to first order,

i2 = I2(V21 + v21, V31 + v31)

= I2(V21, V31) + ∂ I2

∂V21
v21 + ∂ I2

∂V31
v31

≡ I2 + g22v21 + g23v31 , (14.3)

where the g’s are conductances, names for which will be assigned later.
By restricting the Taylor series expansion to produce a linear relationship, it is implicit

that the second- and higher-order terms can be neglected. For FETs, this is not much
of an approximation because I2 ≡ ID , for example, is already linear in V31 ≡ VGS and
V21 ≡ VDS in the resistive regime, and the exponent of any relations in the saturation
regime never exceeds 2. However, for bipolar devices, I2 ≡ IC depends exponentially
on V31, so the linearization places a severe restriction on the allowable magnitude of the
small signal:

v31 ≡ vbe � 2kT/q ≈ 50 mV at 300 K. Applicable to BTs. (14.4)

Performing a similar Taylor series expansion for i3, the gate or base small-signal
current, yields

i3 = ∂ I3

∂V31
v31 + ∂ I3

∂V21
v21

= g33v31 + g32v21 , (14.5)

where the new g’s are to be named later.
The equivalent circuit representing the small-signal components is shown in Fig. 14.3a.

It is often convenient to turn this two-generator equivalent circuit into a one-generator
circuit. One version of the latter is shown in Fig. 14.3b.1 Don’t be alarmed by the

1 It is instructive to convince yourself that the two circuits of Fig. 14.3 are, indeed, equivalent. Do this by
showing that the terminal currents are the same in each case.
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Figure 14.3 Small-signal AC equivalent circuits for all transistors. (a) Two-generator model.
(b) One-generator model with the same terminal characteristics as the circuit in (a).

appearance of a negative sign in front of g32, as, in fact, g32 itself is negative.2 Thus, the
conductor in the top branch of the circuit is real. g32 is often called the reverse feedback
conductance. Generally speaking, |g32| is much smaller than the other conductances,
so it is common practice to name the other conductances as follows:

g33 + g32 ≈ g33 input conductance

g23 − g32 ≈ g23 transconductance

g22 + g32 ≈ g22 output conductance.

The naming of the transconductance deserves some comment. Recall the term
‘transcapacitance’ in Chapter 12: it referred to a circuit element that allowed for the
non-reciprocity of capacitances, i.e., the fact that the effect of terminal 2 on terminal 3
as regards charging currents may be different from the effect of terminal 3 on terminal 2.
The transconductance performs exactly the same function, but for the transport currents,
i.e., those currents involving only conductive components. Transconductance is denoted
by the symbol gm and it follows that

gm ≡ g23 − g32 ≈ ∂ I2

∂V31
. (14.6)

Interestingly, the ‘approximate’ sign in (14.6) is usually replaced by an equals sign,
implying a definition of transconductance that we have just shown to be strictly incorrect.
However, practically, gm can be evaluated this way because g23 � |g32|.

2 Taking the bipolar case as an example, recall g32 = ∂ IB/∂VC E . As VC E is increased (in the active mode),
the quasi-neutral basewidth shrinks and there is less recombination in the base, so IB decreases.
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Figure 14.4 Generic, linearized, hybrid-π , small-signal, equivalent circuit.
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Figure 14.5 HBT structure of Fig. 9.1 with parasitic C’s and R’s superimposed.

With some imagination, the circuit of Fig. 14.3b can be viewed as having the shape
of the Greek letter π . The next step in the development of the small-signal equivalent
circuit is to add capacitors to represent the various charge-voltage relationships derived
in Chapter 12. The resulting circuit is shown in Fig. 14.4. It is a hybrid circuit because
it brings together two sets of components that were derived using different models.
Because of this, and its topology, the circuit is known as the hybrid-π equivalent circuit.

14.3 Hybrid-π small-signal model for HBTs

To make the generic circuit of Fig. 14.4 specific to HBTs, first consider Fig. 14.5, which
shows a superposition of the capacitors and parasitic resistors on an actual HBT structure.
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Figure 14.6 The circuit of Fig. 14.4 with some omissions (see text), and with new labelling for the
remaining components and for the terminals. Note the AC short between the collector and
emitter terminals, as applies to the measurement of fT .

The resistors represent: the resistance of the quasi-neutral emitter; the resistance of
the quasi-neutral collector and the path followed by the collector current to the actual
collector contact; and the resistance of the base. The latter comprises an access resistance
(RB,acc) due to the path from the base contact to the edge of the base quasi-neutral region,
which is easy to envisage, and a less obvious component (RB,sp) that must account for
the spreading nature of the resistance in the quasi-neutral base. RB,sp is considered in
more detail in Section 14.6.1.

Transferring the resistors and capacitors to the hybrid-π circuit yields Fig. 14.6. The
circuit is for the case of an HBT biased in the active mode of operation, so it is permissible
to ignore g32. Also, the output conductance has been omitted because it has a near-infinite
value in the active mode (see Fig. 9.6). As we saw in Section 12.3, transcapacitance is not
an issue in HBTs, at least as regards junction and storage capacitances, so we omit it here.
C ′

EC is also omitted as there is negligible effect at the emitter of any change in VC B when
the transistor is in the active mode. Following tradition, the input conductance is labelled
as gπ , the base-emitter capacitance is labelled as Cπ , and the base-collector junction
capacitance is labelled as Cµ. The AC short-circuit at the output is the effective result
of holding constant the DC bias VC E . This is the condition under which the frequency
metric fT , is determined, as we now describe.

14.4 fT : the extrapolated unity-current-gain frequency

Fig. 14.7 shows experimental data for the frequency dependence of the square of the
magnitude of the current gain |ic/ ib|2 of an HBT. Note how the measured data ends at
a frequency that is imposed by the capabilities of the measuring equipment. However,
for a decade or so before this frequency limit, the gain appears to be rolling-off at
−20 dB/decade, which is indicative of an RC-circuit with a dominant single pole. The
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Figure 14.7 Experimental data for fT and fmax, illustrating extrapolation at −20 dB/decade
from lower frequencies. The label for |ic/ ib|2 should be |h21|2, rather than h21. Reused with
permission from Walid Hafez and Milton Feng, Applied Physics Letters, 86, 152101 (2005) [2].
Copyright 2005, American Institute of Physics.

gain can be extrapolated at this slope to higher frequencies, and the frequency at which
the gain becomes unity (0 dB), is called the extrapolated fT , or, simply, fT . The object of
the following subsection is to derive an expression for fT , starting from the equivalent
circuit that we have developed. This expression will identify the components of the
transistor that need to be considered if high-frequency performance is to be attained.
Because we are seeking a frequency range at which there is a single-pole roll-off, we
will systematically simplify the expressions in our derivation to arrive at a gain that is
proportional to 1/ω2.

You may be wondering why anyone would wish to know a frequency that cannot be
measured, and that is associated with an impractically low value of gain? The answer is
two-fold: it is a definite figure that can be used to compare transistors and, by extrapolating
back from fT at +20 dB/decade, the current gain at useful operating frequencies can be
readily ascertained.

14.4.1 An expression for fT

Measurements of the current gain for evaluation purposes are performed with the col-
lector and emitter terminals held at constant potentials. Thus, as far as the AC signal is
concerned, the emitter is shorted to the collector. This is the case shown in Fig. 14.6.
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Using the notation of this figure, it follows that

ib = [gπ + jωCπ ] vbe + jωCµvbc

ic = gmvbe − jωCµvbc . (14.7)

To eliminate vbc from the above expressions, note

vbc = vbe + vec = vbe + ie Re + ic Rc

= vbe + (ib + ic)Re + ic Rc

≈ vbe + ic(Re + Rc) , (14.8)

where, to simplify the following algebra, the assumption has been made that

ib Re � ic(Re + Rc), i.e., ic/ ib � Re/(Re + Rc) . (14.9)

As we expect the current gain to be much greater than unity, this assumption is justifiable.
Substituting for vbc in the expression for ic yields

ic = gm − jωCµ

1 + jωCµ Rec
vbe , (14.10)

where Rec = Re + Rc.

The square of the magnitude of the collector current is

|ic|2 = g2
m + ω2C2

µ

1 + ω2C2
µ R2

ec

v2
be . (14.11)

To reduce this to an expression having the desired frequency independence, the following
two conditions must be met:

ω2 � g2
m

C2
µ

Condition 1,

ω2 � 1

C2
µ R2

ec

Condition 2.

These conditions set an upper limit to the frequency at which the extrapolation can start.
Turning now to the base current; substituting for vbc in the expression for ib yields

ib = (
gπ + jωCπ + jωCµ(1 + Recgm)

)
vbe . (14.12)

The square of the magnitude of the base current is

|ib|2 = [
g2

π + ω2(Cπ + Cµ(1 + Recgm))2
]
v2

be . (14.13)

To reduce this to an expression having the desired dependence on frequency of ω2, the
following condition must be met:

ω2 � g2
π(

Cπ + Cµ(1 + Recgm)
)2 Condition 3 . (14.14)

This condition sets a lower limit to the frequency at which the extrapolation can start.



P1: Trim: 174mm × 247mm Top: 0.498in Gutter: 0.664in

pulfrey_cup cuuk824/Pulfrey 978 0 521 51460 6 December 25, 2009 21:51

14.5 Designing an HBT for high fT 259

Finally, assuming that the three conditions above are satisfied, the expression for the
square of the magnitude of the current gain is∣∣∣∣ ic

ib

∣∣∣∣
2

= g2
m

ω2(Cπ + Cµ(1 + gm Rec))2
. (14.15)

This expression is in the desired form as the square of the magnitude of the current gain
has a −20 dB/decade roll-off with increasing frequency. When extrapolated to a current
gain of unity, the resulting frequency, in this common-emitter, short-circuit condition, is
called the extrapolated fT , or simply fT . From (14.15)

2π fT = gm

Cπ + Cµ(1 + gm Rec)
. (14.16)

14.5 Designing an HBT for high fT

For design purposes it is helpful to break-up (14.16) into components that can be
identified with various regions of the device, which can then be targeted for improvement
if necessary. To do this, the reciprocal of fT is considered, so the resulting components
have the dimensions of time, and are known as signal delay times. Each time is in the
form of an RC-time constant, and can be thought of as the time taken for the charge in
a particular region to adjust to the new value demanded by the small-signal at the input
of the transistor.

From (14.16) an overall signal delay time τEC can be expressed as

τEC = 1

2π fT
= Cπ

gm
+ Cµ(1 + gm Rec)

gm

= C ′
E B, j

gm
+ C ′

E B,b

gm
+ C ′

B E,t

gm
+ C ′

C B

(
1

gm
+ Rec

)
≡ τE + τB + τC + τCC , (14.17)

where the components of C ′
E B and C ′

B E discussed in Section 12.3 have been substituted
for Cπ , and the collector-base junction capacitance has been substituted for Cµ. From
(12.23), the emitter signal delay is the time taken to charge the emitter/base junction
capacitance via the dynamic resistance (1/gm) of the transistor:

τE = εs AE

gm W
. (14.18)

The signal delay associated with the quasi-neutral base follows from (12.27) and (9.11):

τB = WB

2

(
WB

Dn
+ 1

vR

)
. (14.19)

The signal delay associated with the change in field in the base/collector depletion region
due to the passage of the electrons carrying the signal current follows from (12.36):

τC = w

2vsat
. (14.20)
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Finally, the charging of the base/collector junction capacitance via the dynamic and
parasitic resistances follows from (12.37):

τCC = εs AC

w

(
1

gm
+ WE

AEσE
+ WC

ACσC

)
, (14.21)

where AE and AC are the areas of the two junctions, WE and WC are the widths
of the quasi-neutral-emitter and collector, respectively, and the σ ’s are the relevant
conductivities (see Section 5.4.2).

As in a MOSFET, the key to better performance is scaling. Lateral scaling reduces
AE and AC . Vertical scaling reduces WB and the base/collector depletion-region width
w. In high-performance InGaP/GaAs HBTs, for example, WB is so short (�50 nm) that
the major delay in the device is no longer the base delay. That dubious honour is shared
by the two delays associated with the collector. Note from (14.20) and (14.21) that a
compromise must be reached regarding w as it affects τC and τCC differently. To get an
idea of how short the delays must become, realize that for fT = 800 GHz, the overall
signal delay τEC would have to be ≈200 fs.

14.5.1 SiGe HBT

Fig. 8.3 indicates that the choice of semiconductors for combining with silicon to make
a near-lattice-matched HBT is limited. Germanium has many similarities to silicon, but
its lattice constant is too different for it to be used directly as a low-bandgap base with
a Si emitter. However, by varying the Ge mole fraction x in a compound of Si1−x Gex ,
a graded-composition base can be formed. An example is shown in Fig. 14.8, where
the Ge content is varied from 0 to about 15% over a region spanning the p-type base.
The bandgap decreases as the Ge mole fraction increases, yet the valence-band edge
remains essentially flat in the base because of the very high p-type doping therein. Thus,
the change in bandgap is manifest as a change in conduction-band edge, leading to the
creation of an electric field that adds a component of drift to the usual diffusion current
of electrons. This increase in current reduces the time needed to charge the capacitance
C ′

E B,b, i.e., τB is reduced.
The derivation of an expression for τB in a graded-base HBT is outlined in Exercise

14.8. The result is

τB = QnB

Je
= W 2

B

bDn

[
1 − 1 − e−b

b

]
+ WB

vsat

1 − e−b

b
, (14.22)

where b = �Eg/kB T , with �Eg being the bandgap change across the base due to a
linear compositional grading, and the electrons are assumed to exit the base at their
saturation velocity vsat.

The improvement in τB due to base-grading is illustrated in Fig. 14.9. The stored
charge is not much affected by base-grading, so the improvement in τB is due almost
entirely to the increase in current, which stems from the higher, field-assisted, electron
velocity.
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Figure 14.8 SiGe HBT. Top: energy-band diagram showing how the bandgap reduction in the
base, as the Ge content increases, leads to a field that aids the passage of electrons. Bottom: a
typical Ge profile.
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and for an electron diffusivity of 30 cm2 s−1. These parameters are typical of SiGe HBTs. Je,
QnB and τB are all normalized to their values in an HBT with a uniform base-composition.
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Figure 14.10 Equivalent circuits for estimating fmax for bipolar transistors. (a) Simplified form of
the circuit in Fig. 14.6. (b) The Thévenin equivalent.

The ability to provide high currents and good high-frequency performance are bipolar-
transistor attributes. On the other hand, FETs, in the form of Si CMOS, are unrivalled for
dense, digital circuitry. The SiGe HBT provides silicon technology with the capability of
integrating bipolar- and field-effect-transistors on the same chip. The result is BiCMOS,
a powerful technology for mixed-signal applications.

14.6 fmax: the extrapolated unity-power-gain frequency

One important device parameter missing from the expression for fT is Rb, the base
resistance. This is because fT relates to the current gain, and any desired current can
be forced through any resistance, provided enough voltage can be applied. In practice,
there are limits to the available input voltage, so some metric that takes this into account
is desirable: fmax, an extrapolated frequency related to the power gain, is such a metric.
Following the general procedure used in Section 14.4, we seek to develop an expression
for the power gain that rolls-off with frequency at −20 dB/decade. Extrapolation at this
gradient to a power gain of 0 dB yields fmax.

To develop an expression for fmax consider the hybrid-π circuit of Fig. 14.6 and, for
simplicity, ignore Re and Rc.3 The resulting circuit is shown in Fig. 14.10a. Note also
that the input conductance is missing from the circuit: this is because we have supposed
that the frequency from which we are going to make the extrapolation is high enough
such that

ω2 � g2
π

C2
π

Condition 4 , (14.23)

where the numbering of the conditions follows-on from Section 14.4.

3 Including Re and Rc leads to a very cumbersome expression for fmax [4].
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The Thévenin equivalent of this circuit is shown in Fig. 14.10b. Expressions for
the Thévenin voltage source vTh and impedance ZTh can be obtained using standard
procedures from Network Analysis. The results are

vTh = vin
jωCµ − gm

jωCµ(1 + gm Rb) − ω2CµCπ Rb

ZTh = R−1
b + jωCT

jωCµ(gm + R−1
b ) − ω2CµCπ

, (14.24)

where CT = Cπ + Cµ.
For maximum power transfer to the load, Circuit Theory tells us that the load

impedance ZL should be the complex conjugate of ZTh. Under this circumstance, the
total impedance of the circuit in Fig. 14.10b is

Zcirc = ZTh + ZL = 2�(ZTh) , (14.25)

where the real part of ZTh is

�(ZTh) = −ω2CµCπ R−1
b + ω2CµCT (gm + R−1

b )

ω2C2
µ(ω2C2

π + (gm + R−1
b )2)

≈ CT

Cµgm
, (14.26)

where the considerable simplification is achieved by imposing the following assump-
tions:

Cπ ≈ CT in the numerator

gm � 1

Rb
in the denominator,

and by invoking the following condition:

ω2 � (gm + R−1
b )2

C2
π

Condition 5 .

It is understood that the magnitudes of the small-signal currents and voltages we are
using are RMS quantities. Thus, we need |vTh|2, which is given from (14.24) by

|vTh|2 = |vin|2
ω2C2

µ + g2
m

ω2C2
µ(1 + gm Rb)2 − ω4C2

µC2
π R2

b

≈ |vin|2
R2

b

1

ω2C2
µ

, (14.27)

where the simplification is achieved by invoking the following conditions:

ω2 � g2
m

C2
µ

Condition 6

ω2 � g2
m

C2
π

Condition 7 , (14.28)

and by assuming, once again, that gm � 1/Rb. Thus, the output power under these
conjugately matched conditions is

Pout,max = |vTh|2
4�(ZL )

≈ |vin|2
4R2

b

gm

ω2CµCT
. (14.29)
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Turning now to the input power, we make use of an earlier assumption (Cπ ≈ CT ),
which is equivalent to Cµ � Cπ . This allows the impedance looking into the input of
the transistor to be written as

Z in ≈ Rb − j

ωCπ

. (14.30)

Replacing vin in Fig. 14.10a with a power supply of voltage vS , and with a series
impedance of ZS that is conjugately matched to Z in, the condition for maximum power
transfer to the transistor is met, and the input power is

Pin,max = |vS|2
4�(Z in)

= |vin|2
Rb

. (14.31)

The maximum available gain is

MAG = Pout,max

Pin,max
= gm

4ω2CµCT Rb
. (14.32)

The frequency at which MAG = 1 is the extrapolated fmax, or, simply fmax. It is given
by

fmax =
√

fT,i

8πCµ Rb
, (14.33)

where fT,i = gm/2πCT is the intrinsic fT , i.e., fT from (14.16) without considering
parasitic resistances.

Equation (14.33) emphasizes the need to have not only a transistor with good intrinsic
high-frequency performance, but also a low base resistance to reduce absorption of
the input power, and a high impedance 1/jωCµ to reduce feedback of power from the
output. HBTs are particularly suited to decreasing Rb because the heterojunction at the
emitter/base interface can be specifically designed to impede back-injection of holes
into the emitter. This allows the base doping density to be increased, thereby reducing
Rb without compromising the current gain. Reduction of Cµ is largely a question of
making the active part of the base/collector junction as small as possible.

14.6.1 Base-spreading resistance

A significant contribution to Rb comes from the base-spreading resistance (Rb,sp in
Fig. 14.5). To estimate this resistance, consider the HBT with two base contacts shown
in Fig. 14.11. The total base current IB is split between the two contacts, and the current
IB/2 at the left-hand contact is represented by arrows penetrating laterally under the
emitter. Let us assume that this component of base current falls off linearly in the lateral
direction y due to recombination with electrons injected from the emitter. Thus, the
current associated with the left contact is given by

IB(y) = IB

2
[1 − y/h] , (14.34)
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Figure 14.11 Base spreading resistance. Top panel: illustrating the recombination in the
quasi-neutral base of holes, laterally injected from the base lead, with electrons injected from
the emitter. Bottom panel: showing the assumption of a base current varying linearly with y.

where h is one half of the lateral extent of the base (see Fig. 14.11). We now relate this
current to a power loss in the left-hand side of the device via

Pleft(y) = IB(y)2 R

Pleft =
∫ h

0

I 2
B

4

(
1 − y

h

)2
ρ dy

A
, (14.35)

where ρ is the resistivity of the base material and A = Z WB is the cross-sectional
area, with Z being the length into the page of the base and WB being the quasi-neutral
basewidth. Performing the integration gives

Pleft = 1

24
I 2

B

ρ2h

A
, (14.36)

where

ρ2h

A
≡ RB,QN B , (14.37)

where RB,QN B is the actual resistance of the full quasi-neutral base region. Adding-in
the power loss due to Joule heating in the right-hand side of the base, the total power
dissipation is

P = I 2
B

12
RB,QN B ≡ I 2

B RB,sp , (14.38)
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Figure 14.12 The high-frequency, small-signal, linearized, equivalent circuit for a FET, with no
leakage currents to the gate, and with no substrate effects.

which defines the base spreading resistance RB,sp. Thus, the provision of two base
contacts achieves the desired goal of reducing the effective base resistance. A value for
RB,sp less than RB,QN B is to be expected as not all of the base current penetrates the full
lateral width of the base. The total base resistance in Fig. 14.4 is

RB = RB,acc + RB,sp . (14.39)

14.7 fT and fmax for FETs

The small-signal, high-frequency, equivalent circuit for FETs follows directly from the
general, hybrid-π circuit of Fig. 14.4. All one needs to do is: change the subscripts
(1,2,3 become s,d,g, respectively); add resistors to represent the parasitic resistances
of the source, drain, and gate; and make any appropriate simplifications. One can also
maintain the topology of the large-signal equivalent circuit of Fig. 13.16, as we have
done in Fig. 14.12. We have omitted the input conductance g33, which implies that
there is no tunnelling or leakage through the oxide in the case of a MOSFET, nor
any transport current in the Schottky diode of an HJFET. Additionally, the reverse-bias
feedback conductance g32 has been neglected, as was the case for the HBT. However,
the output conductance (g22 ≡ gdd ) has been retained because of the resistive nature
of the channel that connects the source to the drain. Note that we have not included
any components to represent the substrate: this is warranted for HJFETs on semi-
insulating substrates, Si MOSFETs in the SOI technology, and coaxial nano-FETs (see
Chapter 18), but it is optimistic for planar Si MOSFETs on substrates of appreciable
conductivity.
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14.7.1 fT

By following the procedure used for HBTs in Section 14.4.1, an equation very simi-
lar to (14.16) can be derived for the extrapolated, common-source, unity-current-gain
frequency of FETs:

2π fT = gm

Cgs(1 + gdd Rsd ) + Cgd (1 + (gm + gdd )Rsd )
, (14.40)

where Rsd = Rs + Rd . Observe that the equivalence of (14.16) and (14.40) becomes
exact if gdd is less than both 1/Rsd and gm . This correspondence emphasizes the basic
similarity of transistor types.

Obviously, a high transconductance is desirable for obtaining a high fT . Having a high
mobility helps in this regard, and it is this attribute that makes InP and GaAs HEMTs
and MESFETs well-suited to high-frequency applications. This is particularly the case
for HEMTs, where the high-mobility of the starting semiconductor material is preserved
by the device features of: undoped channel material; confinement of the channel charge,
to a large extent, away from the interface; undoped spacer layer of barrier material for
electrons that do spread into the barrier; finally, a point not mentioned in Section 11.3,
less scattering than in the 3-D case because of there being one less dimension of freedom
for electron movement.

Low values for the gate capacitances Cgs and Cgd are also desirable. In HJFETs these
capacitances are primarily reverse-biased junction capacitances, for which the dielectric
is thicker than the oxide in MOSFETs. This is another reason for the dominance of
HJFETs in high-frequency applications where field-effect transistors are employed.
However, the superlative technology of Si CMOS means that very small structures can
be realized, so low values of capacitance are also possible in Si MOSFETs. This is clear
from measurements on a prototype Si MOSFET from IBM, for which the effective gate
length was 27 nm and the extrapolated fT was 220 GHz [5]. For comparison, an fT of
562 GHz has been reported for a similar length (25 nm) HEMT [6].

In this era of ubiquitous wireless communication there is considerable interest in
improving the high-frequency capability of Si CMOS FETs, as this would enable smaller
and more powerful mixed-signal integrated circuits. The main drawback for MOSFETs is
the inherently low transconductance. Recall that gm ≈ d I2/dV31, and that for a FET in the
saturation mode I2 = IDsat ∝ (VGS − VT )n , where the exponent n is somewhere between
1 and 2. Contrast this with an HBT, for which IC ∝ exp(VB E/Vth). The corresponding
transconductances per unit current are

gm

I
= 1

Vth
HBT

= n

VGS − VT
MOSFET . (14.41)

For equal ratios in the two transistor types, it is required that the overdrive voltage be

VGS − VT = nVth . (14.42)
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At 300 K the operative voltage for the MOSFET would be ≈50 mV, which would mean
a very low bias current. If an even lower current could be tolerated, then it would be
advantageous to operate in the sub-threshold regime, in which an exponential ID − VGS

relationship holds. In this case a gm/I ratio rivalling that of HBTs is possible naturally,
i.e., by virtue of the transport mechanism (thermionic emission over a barrier), as
opposed to having to control (VGS − VT ) to be ≈Vth.

14.7.2 fmax

For HBTs, the derivation of an expression for fmax proceeded from the equivalent circuit
of Fig. 14.10b. The conditions that must be met for this circuit to be a reasonable
approximation to the full, small-signal, equivalent circuit of Fig. 14.4 were stated earlier
in this chapter. If comparable conditions are met for the operation of a MOSFET, then
it follows that an approximate expression for fmax for a MOSFET will have exactly the
same form as (14.33) for the HBT. Specifically:

fmax =
√

fT,i

8πCdg Rg
, (14.43)

where the intrinsic value of fT is 2π fT i = gm/Cgg . If the conditions required to derive
this equation cannot be met, then it is still possible to arrive at an expression for the
power gain that rolls off at −20 dB/decade, but the equation is much lengthier [7]. For
our present purpose, (14.43) serves to draw attention to the need to minimize the gate
capacitance and resistance. This is achieved in modern MESFETs and HEMTs by using
the ‘mushroom’ structure for the gate illustrated in Fig. 11.2. The small contact region
between the gate metal and the underlying semiconductor allows a short gate length to
be achieved, and the wider top region keeps the access resistance low.

14.8 Power gain, oscillation and stability

Our presentation of the high-frequency metrics fT and fmax has focused on their relation
to the physical properties (capacitance and resistance) of transistors. In Circuit Analy-
sis, it is usual to treat the transistor as a two-port network, and to employ small-signal
parameters that refer to either admittance (y-parameters), impedance (z-parameters),
or power ‘scattering’ (s-parameters) [8]. Experimentally, it is possible to determine the
y- and z-parameters by measurements under specific short- or open-circuit conditions. For
very high frequency measurements, which are demanded by modern high-performance
transistors, terminating the network ports via finite impedances is generally done. Termi-
nating the output by the characteristic impedance of the transistor, for example, results
in no power reflection from the load, and this allows direct determination of the reverse
feedback parameter, which is s32 in our notation.

Earlier, we defined fmax as the frequency at which the power gain is unity. It marks
the boundary between when the device is active (power gain > 1) and when it is passive
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(power gain < 1). At such a frequency, if the output were fed back through an external
circuit to the input, the gain of the system could become infinite, i.e., an output could
be sustained with no input. Such a circuit is an oscillator. At frequencies higher than
fmax no amount of external feedback via passive components can create this condition,
so fmax is also known as the maximum frequency of oscillation.

If we want MAG > 1, and no oscillation, as we do in an amplifier, then passivity has
to be maintained at frequencies lower than fmax. It is not sufficient to merely disconnect
the external feedback circuitry, because there is always feedback internally through Cbc

or Cgd . In the absence of external feedback, but allowing for passive terminations that
maintain the conjugate matching but do not cause oscillation, the transistor is said to be
inherently stable. For even lower frequencies, the transistor is potentially unstable, i.e.,
it could oscillate, so it has to be stabilized by additional terminating components, or by
appropriate external feedback. Thus, the gain is no longer the maximum available gain,
but is, instead, the maximum stable gain MSG.

Another frequently used power gain in transistor measurements is Mason’s Unilateral
Gain U. This metric refers to the situation when feedback is employed to ensure that,
at some particular frequency, there is no contribution to the current or voltage at the
input from any current or voltage appearing at the output. This condition is achieved at
the specified frequency by addition of suitable components to the circuit [9]. In terms
of the small-signal parameters, this means that, for the entire network (transistor and
additional components), s32 = z32 = y32 = 0. Under these circumstances the circuit is
said to be unilateralized. Evidently, both U and MAG extrapolate to the same value of
fmax (see Fig. 14.7). The z-parameter version of U is

U = |z23 − z32|2
4[�(z33)�(z22) − �(z32)�(z23)]

. (14.44)

This expression is used in Exercise 18.3.

Exercises

14.1 Consider an Npn In0.49Ga0.51P/GaAs/GaAs HBT operating in the active mode
with VB E = 1.25 V and VBC = −3.0 V. The emitter doping density is 1018 cm−3

and the width of the emitter quasi-neutral region is 100 nm. The corresponding
values for the base are 1019 cm−3 and 25 nm. The cross-sectional area of the
HBT is (1 × 1) mm2. The minority carrier properties of InGaP can be taken to
be the same as for correspondingly doped GaAs.

Estimate the transconductance and the input conductance of the HBT under
the stated operating conditions.

14.2 For the HBT used to generate Fig. 14.7 it appears that the current gain (h21 ≡
our y23/y32) flattens out at ‘low’ frequencies, i.e., below about 3 GHz in this
case.

Calculate the low-frequency gain for the device of the previous question.
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14.3 For the HBT shown in Fig. 14.2, Hafez et al. [2] quote a figure of 72 fs for the
base/collector signal delay time τC . The semiconductor is InGaAs, for which the
drift velocity is shown in Fig. 11.1.

If the area of the collector/base junction is 0.4 × 6 µm2, estimate the collec-
tor/base junction capacitance C ′

C B .
14.4 The width of the InGaAs base in the high-performance transistor of the previous

question can be taken to be 20 nm. The base signal delay time τB is quoted as
being 65 fs.

Estimate the electron mobility in the base.
14.5 An HBT of similar structure to that shown in Fig. 14.2 has been reported with

fT = 710 GHz and fmax = 340 GHz [1]. The base appears to be contacted on
either side of the emitter stripe.

What might be the changes in fmax and in fT if there was only a base contact
on one side of the emitter?

14.6 The collector of the HBT of Question 14.1 has a doping density of 1017 cm−3

and is quite wide (vertical dimension). Ignore all resistances.
(a) Evaluate the combined signal delay time (τC + τCC ) associated with the

base/collector space-charge region of this HBT.
(b) Determine the width of depletion region at the base/collector junction that

would minimize (τC + τCC ).
(c) Evaluate the reverse bias that should be applied to the base/collector junction

to realize this minimum delay.
14.7 For the HBT of the previous question, what value of base resistance Rb would

be needed to make fmax = fT i ?
14.8 This question concerns the base signal delay in a graded-base HBT.

(a) Derive (14.22) for τB in a graded-base HBT.
Start with the expression for the electron current in a graded base [10]

Je = q De

(
dn

dx
− bn

WB

)
, (14.45)

where b = �Eg/kB T .
Assume there is no recombination in the base (d Je/dx = 0), and solve

for n(x). Hence find Je from (14.45), and the base charge Q B by integration,
both in terms of n(0) and n(WB).

Use the boundary condition (9.7) for n(0), and for n(WB) use J (WB) =
−qn(WB)vsat .

The expression for τB in (14.22) follows from Q B/Je.
(b) Use L’Hôpital’s rule to show that (14.22) reduces to (14.19) in the case of

no base-grading and vsat = 2vR .
14.9 Consider a typical CMOS90 Si N-MOSFET with VDS = 1 V. Estimate the

ratio gm/ID at two gate-source biases: (i) VGS = (VT − 0.5) V, and (ii) VGS =
(VT + 0.5) V.
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14.10 One of the two values computed in the previous question is equal to that for an
HBT. Does this fact alone mean that MOSFETs can challenge HBTs in practical
high-frequency applications?

14.11 Fig. 14.3a can be turned into a y-parameter 2-port by simply replacing all the
conductances by admittances. Taking terminal 1 as reference, the circuit is then
described by (

i2

i3

)
=
(

y22 y23

y32 y33

) (
v21

v31

)
. (14.46)

This description applies to any 2-port, such as Fig. 14.12 for a MOSFET.
Here, ignore the parasitic resistances and then, by comparing the two circuits,

show that the so-called intrinsic y-parameters are:

y22 = gdd + jω(Csd + Cgd )

y23 = gm − jω(Cm + Cgd )

y32 = − jωCgd

y33 = jω(Cgs + Cgd ) , (14.47)

where we have used lower-case subscripts in place of the upper-case subscripts
and the primes used in Fig. 14.12, i.e., the capacitances in the above equation
are total capacitances, not capacitances per unit area.

14.12 Equation (14.46) reveals that, when v21 = 0, the current gain is simply y23/y33.
Use this fact to show that the expression for the intrinsic fT for a MOSFET

is of exactly the same form as for an intrinsic HBT ((14.16) with Rec = 0).
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15 Transistors for memories

Semiconductor memory is one of the main drivers of the semiconductor industry.
Competition is fierce to increase density, and to reduce power dissipation and access
times. In this chapter we describe two very important and much-used types of memory
cell, each based on the Si MOSFET: flash memory, and dynamic random access memory
(DRAM). Both memories, and, indeed, all semiconductor memories, have the basic
organizational structure shown in Fig. 15.1a. The feature of flash memory and DRAM
that gives them their capability of exceptionally high density is the use of a single
transistor for the memory element (see Fig. 15.1b).

Flash memory is used in computer BIOS, and has also enabled many popular products,
e.g., memory sticks, digital cameras, and personal digital assistants. There is some
interesting physics in this non-volatile memory element: data is stored as charge on a
floating gate within the insulator of a MOSFET. Charging and discharging is achieved
‘in a flash’ via field-assisted tunnelling.

DRAM is the main memory in PCs and workstations. Data is stored in a capacitor
attached to the source of a pass transistor. As we show later, the action of reading a
ZERO changes the stored data, so the memory has to be refreshed periodically, hence
the appellation ‘dynamic’. Leakage of charge from the storage capacitor also dictates
that there be frequent refreshing of the memory’s contents.

15.1 Flash memory

The MOSFET in a flash-memory cell has two polysilicon gates, one of which is
completely surrounded by insulating oxide, and is, therefore, floating electrically. The
structure is shown in Fig. 15.2.

Programming of the cell is achieved by applying an appropriate voltage to the top gate
(also called the control gate) via the word line. The intent is to either place electrons on
the floating gate (writing), or to remove electrons from the floating gate (erasing). The
state of charge on the floating gate determines the threshold voltage of the transistor
and, therefore, the magnitude of the drain current that will pass into the bit line when
the cell is interrogated. A current sensor in the bit-line circuitry detects this current, and
interprets from it the state of the memory cell.

The effect of floating-gate charge density QF on the charge density in the channel Qn

is illustrated in Fig. 15.3. Applying Gauss’s Law, or by invoking directly the conservation

273
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Figure 15.1 Basic organization of a semiconductor memory. (a) Each memory element is
xy-addressable, and can be written to, and read from, via the bit lines. (b) Single-MOSFET
memory element. The gate connects to the word line, the drain connects to the bit line, and
the connection to the source differs according to the type of memory, as discussed in the text.
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Figure 15.2 Individual flash-memory cell, showing the two gates, one of which is floating, and
the connections to the word line and bit line of a memory array.
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Figure 15.3 Illustrating how electronic charge on the floating gate affects the charge in the
MOSFET channel. (a) No net charge on the floating gate, only polarization charges induced by
the charge on the top gate. (b) Reduction in electron charge in the channel due to the presence of
electron charge on the floating gate.
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of charge:

Qn + QF + QG = 0 , (15.1)

where QG is the charge density on the control gate. Thus, to maintain a given Qn in the
presence of a change in floating-gate charge �QF , the change in control-gate charge
density is simply −�QF . The associated change in control-gate voltage follows from
Gauss’s Law, and is the change in threshold voltage:

�VT = �QG

Cox,top
= −�QF

tox,top

εox
, (15.2)

where tox,top is the thickness of the upper oxide.
The word-line voltage used in addressing the cell is not sufficient to alter QF , so the

act of reading the contents of the cell is non-destructive. If the read voltage is less than
�VT , then the presence of charge on the floating gate puts the transistor in the OFF
state, i.e., the storage of electrons on the floating gate is interpreted as the storage of a
ZERO in the memory cell. The read voltage is such that it is greater than the threshold
voltage when QF = 0. Thus, in this case the FET is ON, drain current is received at the
bit line, and the storage of a ONE is recognized.

In the procedure just described, each cell carries one bit of information. This is single-
level-cell operation. Note that, if QF could be precisely controlled, then a variable �VT

would be obtained. In this case, different values of read voltage would be required to
turn-on the FET, depending on the amount of QF present. This leads to multi-level-cell
operation and the option of increasing the number of stored bits per cell. For example, if
the maximum drain current, which occurs at QF = 0, is Imax, and the minimum current
change that can be detected by the sensing circuitry is �I , then the number of possible
bits is

n = log2

(
Imax

�I
+ 1

)
. (15.3)

Increasing the number of bits per cell is obviously desirable from a memory-density
point of view, but it places greater demands on the placement of charge and on its
discernment. Presently (early 2009), 64 Gbit chips using 4bits/cell have been reported
by SanDisk and Toshiba [1].

The actual programming of a flash-memory cell is illustrated in Fig. 15.4. The top-left
band diagram shows the equilibrium condition when there is no charge stored on the
floating gate. Direct tunnelling of electrons to the floating gate from either the control
gate or the body (substrate) is not possible because the oxides on either side of the gate
are too thick. Writing occurs when a large bias V W

GS is applied to the control gate. This
voltage has to be large enough to: (a) invert the semiconductor surface to create a source
of electrons; (b) produce an electric field in the thinner oxide that is sufficient to enable
field-assisted tunnelling of the channel electrons to the floating gate (see Fig. 15.4b).
The ‘field-assistance’ comes from a reduction of the thickness of the tunnelling barrier
at higher energies; the phenomenon is also known as Fowler-Nordheim tunnelling, after
the two men who first identified it in 1928. The polysilicon floating gate has to be thick
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Figure 15.4 Energy-band diagrams for a flash-memory call. The control gate is assumed to be
metal, the floating gate is n+-polysilicon, and the body of the cell is p-silicon. (a) Equilibrium.
(b) Writing a ZERO by tunnelling from the channel to the floating gate. (c) Storing a ZERO via
charge on the floating gate. (d) Erasing the ZERO by tunnelling from the floating gate to the
channel.

enough for the injected electrons to lose energy by collisions and ‘fall into’ the potential
well. On removing the write voltage, the charge is trapped (see Fig. 15.4c).

To erase the cell, a large, negative voltage V E
GS is applied to facilitate Fowler-Nordheim

tunnelling of the stored electrons to the body (see Fig. 15.4d). This erasure process is fast,
hence the name ‘flash’.1 On the other hand, storage is long-lasting because the electrons
are trapped in a deep potential well, from which direct tunnelling is not probable. As the
data can be retained with no applied voltages to the cell (see Fig. 15.4c), this memory is
non-volatile.

1 ‘Flash’ is attributed to Shoji Ariizumi, a colleague of Fujio Masuoka, who invented Flash Memory at
Toshiba in 1984.
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Figure 15.5 Schematic of an individual DRAM cell, showing the relevant capacitors (storage and
bit-line), and the MOSFET acting as a pass-transistor.

15.2 Dynamic Random Access Memory

Another type of semiconductor memory in which a single-transistor is employed as the
memory cell is dynamic random access memory (DRAM). In this case, the MOSFET
acts as a switch between the bit line and a storage capacitor. The charge stored on the
capacitor determines the state (ONE or ZERO) of the cell. Schematically, the circuit is
as shown in Fig. 15.5, where we label the storage capacitor as Cst , rather than CS , to
emphasize that in modern DRAMs the storage capacitance is not that of the source, but
is that of a parallel-plate capacitor, which is connected to the source and has a much
larger capacitance than that of the source/body np-junction. The stored charge connects
to the bit line via the inversion layer in the channel when the FET is turned ON. The bit
line is floating during this part of the operation, so its voltage may change in response
to the new charged state of the bit-line capacitance CB . Any voltage change is detected
by a sensitive amplifier attached to the bit-line circuitry. In the DRAM we now describe,
no voltage change is indicative of a stored ONE, whereas a slight decrease in bit-line
voltage is associated with a stored ZERO.

The terminal marked ♦ on Fig. 15.5 is called the plate electrode of the capacitor, and
it is held at VDD/2, where VDD is the usual CMOS supply voltage. Labelling the actual
source potential as VS , the basic charge-sharing equation is

Cst Vst + CB VB = (Cst + CB)V ′
B , (15.4)

where Vst = (VS − VDD/2) is the voltage across the storage capacitor, VB is the voltage
on the pre-charged bit line, and V ′

B is the bit-line voltage after accessing the storage
capacitor.
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When writing a ONE, the bit-line voltage is raised by internal, charge-pumping
circuitry to (VDD + VT ), where VT is the threshold voltage of the FET. This means that
when the word line is enabled, turning on the N-channel pass transistor, the source node
rises to VDD . Thus, Vst → +VDD/2.

To read this ONE, the bit-line is pre-charged to VDD/2 and left floating as the transistor
is turned on. Charge sharing occurs, and the new bit-line voltage V ′

B follows from (15.4):

V ′
B = VDD

2

[
Cst + CB

Cst + CB

]
= VDD

2
. (15.5)

Thus, the bit-line voltage is unchanged, and this is interpreted as a ONE.
To write a ZERO to the cell, VB is set at 0, the word line is enabled, turning on the

pass transistor, and the source node falls to 0, which means that Vst → −VDD/2.
To read this ZERO, again the bit-line is pre-charged to VDD/2 and left floating as the

transistor is turned on. Charge sharing results in the bit-line voltage changing to V ′
B ,

which from (15.4) is now

V ′
B = VDD

2

[
CB − Cst

Cst + CB

]
→ <

VDD

2
. (15.6)

The smaller V ′
B can be made the easier it is to distinguish between a ONE and a ZERO.

Note that, on reading a ZERO, the source potential is changed, so the memory cell
needs to be refreshed before the next read operation. This is the reason for this type
of memory being called ‘dynamic’. Besides having to refresh after reading a ZERO,
it is also necessary to periodically refresh the entire memory because of the inevitable
leakage of charge from the storage capacitor. Leakage via the source node principally
involves: sub-threshold conduction, gate-induced-drain-lowering and the reverse-bias
current of the source/body diode. These mechanisms are illustrated in Fig. 13.14.

In view of the need to lower V ′
B below VDD/2 to detect a ZERO, it is not suprising

that the DRAM cell has evolved over the years with the aim of keeping Cst high while
simultaneously shrinking the cell size to increase memory density (see Fig. 15.6). The
challenge has been great because increasing the density means that the number of cells
attached to a bit line increases, thereby increasing CB .

The first DRAMs used an MOS capacitor as the storage element: a positive poten-
tial applied to the plate electrode (see Fig. 15.6a) pulsed the underlying silicon into
deep depletion. In this condition, the surface potential ψs exceeded the usual limit in
MOSFETs of ≈2φB because there were no contiguous n+ regions to supply electrons
and create an inversion layer at the silicon surface. The large ψs was interpreted as
the storage of a ONE. Eventually, ψs would reduce to ≈2φB due to the thermal gen-
eration of electron-hole pairs within the depletion region, and their separation by the
field therein. Thus, the cell had to be refreshed every few milliseconds or so in order
to restore the stored ONE. The problem of electron-hole pair generation was avoided
in the next generation of DRAM cells by replacing the MOS storage capacitor with a
conductor/oxide/conductor parallel-plate capacitor in which the bottom electrode was
n+ silicon (see Fig. 15.6b).
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Figure 15.6 Illustrative example of the evolution of the storage capacitor within a DRAM cell.
‘P’ is the plate electrode, ‘W’ the word line, and ‘B’ the bit line. The numbers indicate typical
maximum values or ranges of values for the number of bits stored in each embodiment.
(a) Plate-oxide-p-silicon MOS capacitor. (b) Poly-oxide-n+-silicon capacitor in a planar
arrangement. (c) Poly-oxide-poly capacitor formed in a trench within the silicon wafer.
(d) Poly-oxide-poly capacitor stacked on top of the cell. (e) Buried word-line cell.

Both of the above cells were ‘planar’, and this placed a limitation on how small the cell
could be made. Therefore, to increase cell density, and yet maintain a high storage
capacitance, the next generation of DRAM cells employed 3-D structures, with the
storage capacitor being either buried in the substrate (Fig. 15.6c), or stacked above the
transistor (Fig. 15.6d). Cells with these structures are still used today.

The latest development in DRAM-cell structuring seeks to reduce the bit-line
capacitance CB , rather than to increase Cst . In the embodiment shown in Fig. 15.6d,
this is achieved by burying the pass transistor below the surface of the silicon, thereby
physically distancing it from the bit line and, consequently, reducing the bit-line-to-
word-line capacitance, which has been one of the major contributions to CB . This
structural arrangement is called ‘recess-channel array transistor’ (RCAT) by Samsung,
and ‘buried word-line’ (BWL) by Qimonda [2]. The example shown in Fig. 15.6d is
based on Qimonda’s design; note how the channel forms a U-shape around the word line,
thereby reducing short-channel effects, which would otherwise be significant, given that
the word line width is that of the technology node, e.g., presently (2009), 65 or 45 nm.
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Exercises

15.1 A floating-gate flash memory cell of the construction shown in Fig. 15.2 uses a
word-line voltage of 1.5 V during the READ operation. The upper insulator is
silicon dioxide and has a thickness of 20 nm. The threshold voltage when there
is no charge stored on the floating gate is 1.0 V. The area of the floating gate is
(100 × 100 ) nm2.

How many electrons need to be stored on the floating gate to represent a ZERO?
15.2 The maximum current that can be delivered to the bit line by one cell of a

floating-gate flash memory is 1.5 mA µm−1. The cell width is 100 nm.
If each cell is required to store 4 bits, what level of current discrimination must

the bit-line sensing circuitry have?
15.3 Consider a stacked-capacitor DRAM with its storage capacitor of 1 pF charged

to 1 V. This represents a stored ONE.
The FET in the DRAM is a CMOS65 N-FET of width Z = 100 nm.
If charge leakage from the storage capacitor is due to the sub-threshold current

of the FET, how long will it take for the storage capacitor to lose 50% of its
charge?

15.4 The bit-line sensing circuitry in the DRAM of the previous question can detect
a voltage change of 10 mV, and this is used to distinguish between a stored ONE
and a stored ZERO in a single cell.

Compute the magnitude of the bit-line capacitance.
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16 Transistors for high power

Power amplifiers and switch-mode power supplies are two instances where the constituent
transistors are required to deliver higher currents, and to withstand higher voltages,
than are encountered in the digital, high-frequency and memory transistors discussed
previously. In this chapter we briefly describe the structural details of, and discuss the
principal properties of, several types of high-power transistor: the GaAs HBT and GaN
HJFET for power amplification, and the Si MOSFET and hybrid transistor for power
supplies.

High currents mean high carrier densities, which can lead to a modification of the
space-charge region at the output junction (collector/base or drain/body), with con-
sequences for the frequency response and/or the breakdown voltage. We begin this
chapter with a description of the breakdown process (avalanche breakdown), and of the
high-current, space-charge-modifying effect (the Kirk Effect).

16.1 Avalanche breakdown

Operating transistors at high VC E or high VDS can lead to electrical breakdown of
the collector/base or drain/body junction, respectively. Breakdown is characterized by
the sudden onset of a large current which, if it is not interrupted, can lead to thermal
destruction of the transistor. The breakdown process in a reverse-biased pn-junction is
illustrated in Fig. 16.1.

Electrons entering the high field of the junction rapidly gain kinetic energy. If this
energy is allowed to exceed the bandgap energy Eg , then, when the electron finally
collides with a lattice atom, an energy E ≥ Eg can be transferred to another electron,
thereby exciting it into the conduction band. Thus, one electron creates another electron
(and a hole). This process is the generation-equivalent of Auger recombination. The
newly generated electron and hole are, in turn, accelerated by the junction field, leading
to the possibility of creation of more electron-hole pairs, and a rapidly increasing current.
For obvious reasons this phenomenon is called avalanche breakdown.

The value of the electric field at which the avalanche is initiated is called the break-
down field strength Ebr ; as is to be expected, perhaps, there is some correlation between
Ebr and Eg (see Table 16.1). The Table lists several semiconductor properties that
are important to power transistors: κL is the thermal conductivity; JFOM is Johnson’s
figure-of-merit [2], which is intended to characterize devices for applications in which
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Table 16.1 Important, power-related, properties of various semiconducting materials. κL is the thermal
conductivity; JFOM is Johnson’s figure-of-merit (see text), which is normalized to that of Si in this Table.
Adapted from DiSanto [1], courtesy of David DiSanto, ex-SFU.

Eg Ebr vsat κL JFOM
Material (eV) (MV cm−1) (107 cm s−1) W (cm.K)−1 (Ebrvsat )/Si

Si 1.12 0.3 1.0 1.5 1
InP 1.35 0.6 1.5 0.7 3
GaAs 1.43 0.4 1.0 0.5 2
SiC 3.26 3.5 2.5 5.0 29
GaN 3.39 2.0 2.5 1.5 17
Diamond 5.45 10.0 2.7 20 90

EV

EFp

EC

EFn

qVbr

Figure 16.1 Energy-band diagram for large reverse bias across a pn-junction, showing avalanche
multiplication of both electrons and holes, following collisions with atoms at the sites marked X .

operation at both high power and high frequency is required. The large-bandgap semi-
conductor diamond comes out very well in both of the above categories, and the making
of transistors from it is presently the subject of much research interest.

In a pn-junction, the maximum electric field occurs at the interface between the two,
differently doped regions. The left panel of Fig. 16.2 shows the case of an abrupt junction
with uniform doping on each side of the junction, and under low-current conditions.
Note that the n-side is less heavily doped than the p-side. The area under the E-x curve
is the total voltage drop across the junction:

Vbi + Va = 1

2
Ebr W , (16.1)
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Figure 16.2 Variation across a pn−n+ structure with two abrupt junctions of: (a) charge density,
(b) electric field, (c) electrostatic potential. The set of figures on the left is for the case of a
current density that is low enough for the space-charge due to the mobile electrons to be
negligible, and for the n− layer (labelled ‘epi’) to be just fully depleted. The set on the right is for
the case when this mobile charge is sufficient to reduce the electric field at the pn− interface to
zero. The depletion region spreads into the n+ layer, the sub-collector. The applied bias is the
same in both sets of figures.

where W is the width of the space-charge region at the junction, and Va is the applied,
reverse-bias voltage (assumed to be dropped entirely across the space-charge region),
and Ebr is identified with E(0). Invoking the Depletion Approximation, we use (6.22)
to estimate W , and simplifying by assuming |Va| � Vbi , a useful expression for the
breakdown voltage results:

Vbr = E2
br

ε

2q

(
1

ND
+ 1

NA

)
. (16.2)

This equation emphasizes the importance of employing a semiconductor with a high
breakdown field strength. Also, if other factors dictate the use of a semiconductor with
a relatively low Ebr , such as Si, then the equation shows the necessity of using a low
doping density for at least one side of the junction. So as not to compromise the principal
transport-determining region of the transistor (the base or channel), it is the collector
(drain) in which the doping is reduced.
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16.2 The Kirk Effect

Consider a structure in which a highly doped n-region has been added to the right-hand
side of our pn-junction (see the right panel of Fig. 16.2). This pn−n+ arrangement
arises at the base/collector junction in Npn-HBTs, and in the body/drain region of
lateral-diffused MOSFETs. The lightly doped region is usually deposited by vapour-
phase epitaxy, and is referred to as the epi-layer. Generally, we are interested in the
electric-field profile in and around the epi-layer, and how it changes in response to an
increasing electron current. Analytically, it is easier to treat the HBT case as the situation
is essentially, one-dimensional. Thus, let us consider an HBT in the forward-active mode
of operation with electrons being injected from the emitter, and passing through the p-
type base into the lightly n-doped epi-layer, before being collected in the heavily n-doped
sub-collector.

Neglecting the holes in the epi-layer, Poisson’s Equation in 1-D is

dE
dx

= 1

εs

[
q Nepi − JC

vsat

]
, (16.3)

where we assume that the electrons are moving in the epi-layer at their saturation velocity.
For low collector current density JC the field gradient is positive, as shown in the left-
side of Fig. 16.2b for x > 0. At JC ≡ Jcrit = q Nepivsat the field becomes constant. At
higher JC the field gradient in the epi-layer becomes negative, as shown in the right-side
of Fig. 16.2b for x > 0. What is happening, of course, is that the positive space charge
of the donor ions in the epi-layer is being swamped by the negative space charge of the
electrons carrying the current. Eventually, a current density is reached at which the field
goes to zero at the base/epi-layer boundary. This means that there is then no field to
prevent holes from the base moving into the epi-layer!

The current density at which the field disappears at the p/epi junction is known as the
Kirk current JK . An expression for JK is easily derived (see Exercise 16.3), but it should
be clear that the onset of the Kirk Effect can be delayed by using a semiconductor for
which vsat is high, and by choosing a high doping density for the epi-layer. Of course,
to avoid the effect altogether, the epi-layer thickness could be reduced to zero, but then
the breakdown issue comes to the fore. The implications of operating at or above JK for
HBTs and lateral diffused MOSFETs are discussed in Section 16.3.1 and Section 16.4.1,
respectively.

16.3 Transistors for power amplifiers

The modern craving for wireless electronics has led to the development of transistors
suited to the provision of high power at high frequencies. Here, we consider briefly two
types of transistor that meet these specifications: InGaP/GaAs HBTs, and AlGaN/GaN
HJFETs. The former, operating at modest voltages and power, are used in the transmitter
stage of cell phones, and are also candidates for the final stages of power amplifiers in
radio base-stations, where operation is at tens of volts and hundreds of watts. GaN-based
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Figure 16.3 A power-HBT cell. The dashed lines delineate one cell, which can be replicated to
place more transistors in parallel, thereby increasing the current-handling capability.

HJFETs are also being considered for the latter application, as well as for implementation
in situations where the high bandgap of the material gives this transistor an advantage
for operation in harsh environments, e.g., in automobiles and war zones.

16.3.1 GaAs HBTs

The essential elements of a high-power, high-frequency HBT are illustrated in Fig. 16.3.
They are: semiconducting materials chosen for their high mobility; interdigitated emitter
and base contacts to enable a large current via the large total emitter area whilst simulta-
neously reducing the base-access- and base-spreading-resistances; a thick, lightly doped
collector to ensure a high breakdown voltage.

In the embodiment shown, the splitting of the base current between three contacts
reduces the power dissipation in the base spreading resistance to 1/12 of its value in
the single-base case (see Exercise 16.4). The tall emitter helps to separate the emitter
and base metallizations, and the thickening of the emitter towards its top helps reduce
the parasitic emitter resistance. Fig. 16.3 forms a ‘power cell’, many of which can be
connected in parallel to increase the output current.

By opting to make the collector thick and lightly doped, the design gives precedence
to attainment of a high Vbr over a high JK . Recall that at JC = JK there is no field at the
base/collector junction, i.e., there is no potential barrier to constrain the holes to the base.
Therefore, on further increasing JC , holes flood into the epi-layer, effectively extending
the width of the quasi-neutral base region (the p-region in Fig. 16.2). This increases the
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Figure 16.4 Predictions from ATLAS of fT for an AlGaAs/GaAs HBT using the four transport
models described in the text. From Apanovich et al. [3], C© 1995 IEEE, reproduced with permission.

base transit time τB . The associated reduction in the width of the base/collector space-
charge region may improve the collector signal delay time τC , but this is countered by the
increase in the collector charging time τCC . Thus, the overall effect is to increase τEC (see
(14.17)), and this leads to a decrease in fT at high currents, as illustrated in Fig. 16.4.
The data here, and in the next three figures, are from numerical simulations using
Silvaco’s ATLAS. The device is an AlGaAs/GaAs HBT with emitter, base, and collector
thicknesses of 150, 100 and 500 nm, respectively, and associated doping densities of
5 × 1017, 1019 and 1017 cm−3.

Prior to the onset of the Kirk Effect, fT increases with current due to the improvement
in transconductance. This can be appreciated from (9.12) and (14.6),

gm ≈ ∂ IC

∂VB E
= IC

γ (IC )Vth
, (16.4)

where γ is the junction ideality factor. At emitter current densities that are high
enough for recombination in the emitter/base space-charge region to be neglected, as we
considered in Section 9.2, γ = 1, at least while low-level injection conditions apply. In
power HBTs, this condition can be violated.

As an example of high-level injection conditions, let us assume that the injected
minority carrier concentration at the edge of the depletion region in the base of an Npn
transistor is such that n(xdp) = pp0. Under this condition, (6.29) becomes

n(xdp)pp0 = n2
i expVa/Vth → n(xdp) = ni expVa/2Vth . (16.5)
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Figure 16.5 Predictions from ATLAS of the collector and base currents for the same HBT and
models as used in Fig. 16.4. From Apanovich et al. [3], C© 1995 IEEE, reproduced with permission.

The increase in minority carrier concentration is matched by a corresponding increase
in majority carrier concentration in order to maintain charge neutrality. The altering
of the conductivity by changing the carrier concentrations is known as conductivity
modulation. At the collector-end of the base the minority carriers are extracted, so this
means that there will be large gradients in the concentrations of both carriers. Thus,
both electrons and holes will diffuse; the condition is known as ambipolar diffusion.
As holes and electrons diffuse at different rates, an electric field is set up that retards the
diffusion of the faster carrier. The situation is clearly quite complicated, but it transpires
that diffusion dominates, with an effectively higher diffusivity. This is known as the
Webster Effect. The importance of all this for our discussion is that a diffusive electron
current with the boundary condition of (16.5) leads to an ideality factor of γ = 2 in
(16.4), and another contribution to the reduction in fT at high currents.

An increase in γ brings about a decrease in current for a given bias; the effect is
clearly seen in Fig. 16.5. This figure also shows the effect of different transport models
on the predictions for the collector and base currents. The four models referred to in this
figure, and in Fig. 16.4, Fig. 16.6, and Fig. 16.7 are:

� DD - Drift Diffusion. This model uses Poisson’s equation, and the first four equations
from (5.24) with Te = Th = TL , and ∇TL = 0.

� NDD - Non-isothermal Drift Diffusion. This is the same as DD but with the lattice
temperature allowed to vary with position. Heat flows out of the device via one of the
contacts, and heat balance is accounted for by (5.25).
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Figure 16.6 Predictions from ATLAS of the maximum lattice temperature for the same HBT and
models as used in Fig. 16.4. From Apanovich et al. [3], C© 1995 IEEE, reproduced with permission.

� EB - Energy Balance. This model uses Poisson’s equation and the set of equations
(5.22). The carrier temperatures are allowed to be functions of position, so there is a
contribution to the current from any gradient in kinetic energy. However, the lattice
temperature is held constant.

� NEB - Non-isothermal Energy Balance. This is the same as EB, but the lattice
temperature is allowed to vary with position.

The inclusion of energy balance leads to prediction of an improved fT , as Fig. 16.4
clearly shows. This is because electrons injected into the high field region of the reverse-
biased base/collector space-charge region are accelerated to velocities above vsat before
thermalizing collisions occur. This phenomenon of velocity overshoot reduces the signal
delay time in the collector space-charge region, thereby improving fT . The increased
velocity also increases the current, as evinced by comparison of the DD and EB models
in Fig. 16.5. The non-isothermal models predict a significant rise in lattice temperature
(see Fig. 16.6). This increases the minority-carrier concentrations (see (4.19) and (4.20)),
leading to a further increase in current at high bias.

The prediction of a higher current by the non-isothermal models may seem like a good
thing. However, as Fig. 16.7 shows, this is not necessarily so. The ‘current droop’ that is
evident is a consequence of the device heating up. Note that the parameter held constant
in this figure is the base current. To achieve this as the temperature rises, the base/emitter
voltage has to be reduced, and it is this that leads to the undesirable reduction in collector
current.
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Figure 16.7 Predictions from ATLAS of the collector-current characteristic for the same HBT
and models as used in Fig. 16.4. From Apanovich et al. [3], C© 1995 IEEE, reproduced with

permission.

The results displayed in the previous four figures show the importance of including
energy balance and lattice heating in the modelling of high-power bipolar transistors.
The former allows for non-local transport, i.e., it predicts currents due to kinetic energy
changes which cannot be accounted for in the usual drift and diffusion currents, as these
are determined by the local electric field via a field-dependent mobility µ(E) and the
Einstein Relation. Lattice heating is particularly important in bipolar transistors because
of the exponential dependence of minority-carrier concentrations on temperature.

16.3.2 GaN HJFETs

High-power HJFETs based on GaN are relative newcomers to the power-transistor scene.
With reference to Table 16.1, two properties of the material that are superior to GaAs,
the material on which rival high-power HBTs are based, are the breakdown field strength
and the thermal conductivity. The high electron saturation velocity is also advantageous
for high-frequency applications, at least in devices where the field is high enough for
this velocity to be attained.

A typical GaN HJFET is shown in Fig. 16.8. The gate length and the separations
between gate and source/drain electrodes are about 100–500 nm, but the operating volt-
ages can be high (28 V for base-station applications, for example) so velocity saturation
is likely. As we explain below, an AlGaN surface is electrically active, hence the use of a
passivation layer such as silicon nitride. The gate electrode extends over the passivating
layer towards the drain, forming a field plate. This serves to reduce the field in the
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Figure 16.8 AlGaN/GaN power HJFET. The dashed lines delineate one cell, which can be
replicated to place more transistors in parallel, thereby increasing the current-handling
capability.

channel at the edge of the gate, thereby improving the breakdown voltage. However, the
field plate adds capacitance to the device, which is not desirable for high-frequency per-
formance. This drawback can be mitigated somewhat by recessing the gate, as shown in
Fig. 16.8. The benefit comes from increasing gm through the closer coupling of the gate to
the channel. The latter takes the form of a 2-D electron gas at the AlGaN/GaN interface.

Presently, single-crystal GaN wafers, on which high-quality GaN and AlGaN layers
might be grown, are not available. Instead, one choice of substrate is SiC, which has excel-
lent thermal conductivity (see Table 16.1). A buffer layer of GaN is deposited before com-
mencement of epitaxial growth of the actual layers of the device, which crystallize in the
wurtzite structure. Typically, growth is from the {0001} basal plane in the [0001] direc-
tion, which is known as the c-axis (see Fig. 16.9). The atoms are arranged in two, repeat-
ing, closely packed bilayers, each layer of which is an hexagonal arrangement of either
Ga ions or N ions. In the example shown, the top layer in each bilayer is gallium, so this
structure is known as ‘Ga-face’ GaN. The Ga-N bond is strongly ionic, and because the
electronegativity of N is higher than that of Ga, the electron probability density is greater
in the vicinity of the N atom. Thus, the material is spontaneously polarized, with the
polarization vector �PSp pointing from N to Ga, i.e., towards the substrate in this example.

For the ternary material Alx Ga1−x N, the lattice constant is given by

a = (0.3189 − 0.0077x) nm . (16.6)

Therefore, AlGaN grown pseudomorphically on GaN is under tensile strain. This adds
a piezoelectric polarization �PPz to the spontaneous polarization that is inherent to the
material. The situation for AlGaN on Ga-face GaN is illustrated in Fig. 16.10. The
surface polarization charge densities are negative on the top of the AlGaN (region 2) and
positive on the bottom of the GaN (region 1). At the interface between the two materials
the surface polarization density is

σint = ( �PSp,2 + �PPz,2) · n̂2 + �PSp,1 · n̂1 , (16.7)

and it is positive for the case under consideration.
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Figure 16.9 Wurtzite crystal structure showing the bilayers of N and Ga arising from growth on
a Ga-face substrate. Reused with permission from O. Ambacher, J. Smart, J. R. Shealy, N. G.
Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M.
Stutzmann, W. Rieger and J. Hilsenbeck, Journal of Applied Physics, 85, 3222 (1999) [4].
Copyright 1999, American Institute of Physics.
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Figure 16.10 Polarization in GaN and strained AlGaN, and the resulting charge density at the
interfacial layer, for films grown on Ga-face GaN.

The sheet polarization charges are bound charges, i.e., they are fixed in space, rather
like donor or acceptor ions. In the case under consideration, electrons are drawn to the
interface, perhaps during the period of cooling after the growth of the layers, or from
the ohmic contacts in the subsequently fabricated HJFET. Thus, it is possible to create a
sheet of electrons at the interface without doping either of the layers! This sheet of charge
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Figure 16.11 Switched power supply. (a) Basic circuit for the transformation of a DC input voltage
to a higher DC output voltage. (b) The switching cycle.

is actually a two-dimensional gas because the electrons are confined in a potential notch,
one side of which is due to the electon-affinity mismatch between the two materials. The
relation, in terms of the mole fraction x for Al, is

χ (x) = 4.1 − 1.87x eV . (16.8)

A typical value is x = 0.15, which is small enough for the lattice-constant mismatch to
be acceptable; it yields a barrier of about 0.28 eV.

The spontaneous and piezoelectric polarizations in AlGaN are so large that the sur-
face concentration of electrons ns at the interface can be around 1013 cm−2. This very
large value gives AlGaN/GaN HJFETs a high current-carrying capability. Additionally,
the large bandgap and breakdown voltage allow operation at typical base-station voltage
levels of 28 V. This means that additional voltage-conversion circuitry is unneccesary.
These factors, allied with the previously discussed attributes of high electron velocity
and high thermal conductivity, combine to produce a transistor with considerable merit
for power amplifiers operating at high frequencies.

16.4 Transistors for high-voltage power supplies

Fig. 16.11a shows a very rudimentary example of the use of a switch in a circuit that
can transform DC voltages. Basically, when the switch is closed energy is stored in the
inductor, and when the switch is opened, this energy is transferred to the capacitor, which
charges up to a voltage that depends on the duty cycle, i.e., the fractional time that the
switch is closed during one cycle of the control signal.

Naturally, transistors are used for the switch. When the switch is closed, the transistor
needs to pass a large current (recall that the energy stored in an inductor is ∝ L I 2).
As this current is derived from the input voltage source, then it follows that the ON-
resistance of the transistor must be low. This resistance should also be low to avoid
excessive power dissipation within the transistor. When the switch is open, the transistor
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Figure 16.12 High-power laterally diffused (LD) Si MOSFET. The dashed line marks the edge of
the space-charge layer at the p-body/n-epi junction; for RESURF operation its thickness ydn

equals the thickness of the epi-layer.

must be able to withstand a voltage at least equal to that of the output voltage. The
rating that specifies this property is the forward blocking voltage. The two states of the
transistor are illustrated in Fig. 16.11b. Being able to switch quickly between these two
states is obviously advantageous.

Originally, in the 1960s, the Si BJT was the most developed transistor and it was
employed for the switching transistor in power supplies. However, bipolar transistors
(BTs) are current-controlled devices, and this leads to complexity in the pulse-width-
modulated control circuitry used to adjust the duty cycle. Also, to get the required low
ON-resistance, BTs must be operated in the saturation mode; as we saw in Section 13.2,
this is not conducive to fast switching. MOSFETs are voltage-controlled devices, which
simplifies the control circuitry, and are unipolar, so switching times are not determined
by slow recombination processes. Therefore, with the advent of high-current-handling
Si MOSFETs in the 1970s, this transistor gradually became the dominant transistor in
switch-mode power supplies. Today, in 2009, in the form of a lateral-diffused device, it
is used in most high-speed, medium-power applications. For very high power situations
the insulated-gate BT is used. Both these transistors are described below.

16.4.1 Si L-DMOSFETs

The basic lateral-diffused MOSFET is illustrated in Fig. 16.12. The source is embedded
in a p-well, and these two regions are formed in a sequential diffusion process, hence
the word ‘diffused’ in the transistor title. ‘Lateral’ comes from the lateral layout of the
device, which allows the three terminal contacts to be placed on the top of the structure.
This is the major difference from the earlier vertically oriented device, the V-DMOSFET.
The lateral arrangement greatly facilitates the integration of the power transistor with
standard CMOS FETs, which can be used for the control circuitry. The drain consists
of the usual n+-contact region, and a lightly doped drain extension in the form of an
n−-epi layer grown on the p-body.

The junction between the p-well and the epi-layer forms a pn-diode (J1 on the figure).
The junction between the epi-layer and the p-body forms a second diode (J2 in the figure).
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The breakdown voltage of J1 is given by (16.2), with the relevant doping densities being
Nepi and Np−well. The latter is the greater because of the need to counter-dope the epitaxial
layer, so the breakdown voltage of J1 can be approximated as

Vbr,1 = E2
br

ε

2q

1

Nepi
. (16.9)

The desirability of a low value for Nepi is mitigated by the need to reduce the ON-
resistance, which is determined to a large extent in this device by the lateral resistance
of the epi-layer. One solution, you might imagine, would be to use a thick epi-layer.
However, it turns out that a thin epi-layer is advantageous because of an interesting 2-D
effect, the reduced surface field (RESURF) effect [5].

At the diode junction J2, the space charge region extends into the n-epi layer by a
distance ydn , which can be estimated from applying the Depletion Approximation. With
reference to Fig. 16.12,

ydn =
√

2εs

q
V

Nbody

Nepi(Nepi + Nbody)
, (16.10)

where V = Vbi,J2 + VDS . The basic idea is to choose the thickness of the epi-layer to be
less than ydn at the desired forward blocking voltage. In this way, the depletion region
from J2 reaches through to the surface of the FET and augments the depletion region
surrounding J1, effectively extending it in the x-direction. Thus, the voltage drop across
J1 is spread over a longer region, and this has the effect of reducing the electric field
Ex below Ebr . This then shifts the region of likely breakdown to junction J2. By making
Nbody < Nepi, then Vbr,2 can exceed Vbr,1. This desirable state of affairs increases the
forward blocking voltage. However, note that there is a parasitic n+ pn− BJT formed
by the source/body/epi regions, and if the current is high enough, the Kirk Effect will
come into play and affect the voltage distribution in the structure (see Fig. 16.2). In the
L-DMOSFET the point of highest field moves to the n+n− junction between the drain
and epi-layer regions, and this becomes the determinator of the breakdown voltage.

It can be appreciated that the L-DMOSFET poses an interesting design problem
involving the choice of epi-layer thickness and doping, and the interplay between block-
ing voltage and operating current. If very high operating currents and voltages are
required, then the device of choice is the insulated-gate bipolar transistor, a lateral
version of which is described in the following section.

16.4.2 Lateral insulated-gate bipolar transistor

As its name suggests, the insulated-gate bipolar transistor (IGBT) is a hybrid device. It
combines the high output-current capability of a BJT with the high input-impedance-
and voltage-control-attributes of a FET. A lateral version of the insulated-gate bipolar
transistor (LIGBT) is shown in Fig. 16.13. The structure differs from that of the
L-DMOSFET in Fig. 16.12 at the drain-end of the device: the n+ region is replaced
by a p+ region within an n-type buffer zone. The additional pn-junction is labelled J3.
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Figure 16.13 Lateral IGBT, showing the biolar transistor with its base connected to the cathode K
only when the MOSFET is ON.

There are name changes too: the drain contact becomes the anode (A), and the source
contact becomes the cathode (K). The bipolar part of the device is traced on Fig. 16.13;
it is a p+npwell BJT, with the base being the n-epi layer. The cathode doubles as the
contact to the collector and to the source of the N-MOSFET. The gate-source voltage
VG K determines the state (ON or OFF) of the device.

When VG K < VT , the threshold voltage of the MOSFET, there is no inversion layer
connecting the n+-source to the n-epi region, which is now the drain of the MOSFET.
A forward bias on the IGBT (VAK > 0) results in the reverse biasing of junction J1,
which provides the LIGBT with its forward blocking voltage. The depletion region in the
epi-layer extends towards the anode, but is prevented from reaching the p+ region under
the anode by the n-buffer layer. In other words, punch-through of the epi-layer, now in
its role as the base, is averted. In punch-through there is no quasi-neutral base region
to limit the current, so the blocking condition would be lost. The p+nbuffer junction J3
provides the IGBT with its reverse blocking voltage, i.e., when VAK < 0 in the OFF
state.

The IGBT turns on when VG K > VT ; an inversion layer forms under the gate, and this
establishes a terminal contact (K) to the base epi-layer, into which electrons are injected.
If, additionally, VAK > 0, then the p+nbuffer junction J3 becomes forward biased, and
holes are injected into the base. This hole current is collected by the cathode. Thus, large
hole conduction is modulated by a much smaller electron conduction. This is another
example of conductivity modulation, and can lead to a situation where the injected hole
density exceeds the background doping density of the n-epi layer. This leads to a larger
current, and to a smaller ON-resistance, than is possible in the L-DMOSFET, where the
current is due to the drift of majority carriers.

Note that, before conductivity modulation can occur, the turn-on voltage of junction
J3 has to be reached. Thereafter, the familiar BT collector characteristic unfolds, albeit
with the MOS-derived voltage VG K being the control voltage, rather than the usual
pn-junction-derived voltage VB E . The general characteristics are shown in Fig. 16.14.
Specific characteristics are shown in Fig. 16.15, where yet another name for the
source/cathode has been used, namely, the emitter.
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Figure 16.14 General collector characteristic for an IGBT.
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Figure 16.15 Collector characteristic for Toshiba MG75J1ZS50 IGBT.

Si IGBTs are capable of supplying 100’s of amps and watts in the ON state, and of
withstanding 100’s of volts in the OFF state. They are not fast-switching devices, though,
on account of the substantial minority carrier storage that occurs in the long n-epi base
region.

Exercises

16.1 A silicon n+ p− p power diode has an emitter with a donor doping density of
1020 cm−3. The weakly doped region of the two-part p-type base is 2 µm long
and has a doping density of 1016 cm−3. The remainder of the base has a doping
density of 1017 cm−3. This arrangement gives a high breakdown voltage and a
low series resistance.
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A reverse bias of 40 V is applied to the diode, and the junction capacitance is
measured to be 3.48 × 10−5 F m−2.
(a) Show that the lightly doped part of the base is completely depleted.
(b) Calculate the maximum electric field in the device.

16.2 The breakdown voltage of a particular GaAs pn junction is 3 V.
If the doping densities remained the same but the semiconductor were changed

to GaN, what would the breakdown voltage be?
16.3 Integrate (16.3) to show that the current density at which the field disappears at

the p/epi interface in a pn−n+ junction is

JK = q

[
2εs

qW 2
epi

(Va + Vbi ) + Nepi

]
vsat. (16.11)

16.4 Fig. 16.3 shows a power HBT in which the emitter is divided into two fingers, each
of lateral width h/2. Also, the base current is split between three base contacts
that are interdigitated with the emitter fingers.

Show that this arrangement leads to a 12-fold reduction in the power dissipation
associated with the base-spreading resistance, as compared to an HBT with a
single emitter of width h and a single base contact.

16.5 Consider an Al0.3Ga0.7N/GaN HJFET. Data on the polarization properties of this
material system are given in Appendix B.

Using this data, show that if 10% of the polarization charges at the interface
between the two materials attract electrons, then the electron sheet density would
be ≈1.7 × 1012 cm−2.

16.6 A Si L-DMOSFET has a body doping density of 5 × 1016 cm−3. The body/epi
junction is required to withstand a voltage of 100 V, under which conditions ydn

in Fig. 16.12 can be assumed to have penetrated through the entire epi-layer
thickness. The sheet resistance of the epi-layer is to be 2 × 103 
/square, and can
be taken to exist at the normal ON voltage, at which ydn can be taken to be zero.

Using these specifications, calculate the thickness and doping density of the
epi-layer.

Note: an analytical solution can be easily obtained if the assumption of
Nbody < Nepi is made in (16.10).
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17 Transistors for low noise

In this modern age of increasing wireless communications there are many applications
requiring transistors that have low inherent noise, and can operate at very high fre-
quencies, e.g., low-noise amplifiers for satellite communications systems, mixers and
multipliers for point-to-point and point-to-multi-point radio, multi-port phase/frequency
discriminators for automobile collision-avoidance radar.

This chapter gives a very brief overview of the main sources of noise in transistors:
thermal noise, shot noise, and flicker noise. How each of these noise sources is manifest
in the various types of transistor discussed in this book is mentioned. It becomes apparent
that the HJFET has superior low-noise performance at high frequencies, so this transistor
is then used to show how a transistor’s noise sources are incorporated into its small-
signal equivalent circuit. A metric for noise performance, the noise figure NF, is then
introduced.

17.1 Noise: general properties

We are interested in how noise can originate in the inherent properties of a transistor,
rather than arise due to interference from other sources.

Inherent noise is random in nature, often with a time-averaged value 〈vn(t)〉 ≈ 0; so
noise is usually described in terms of a root-mean-square (rms) value

√
v2

n =
√

lim
T →∞

(
1

T

∫ T

0
vn(t)2 dt

)
, (17.1)

where T is the time period of observation. Recall that the rms formalism is used in
relation to power:

Paverage = 1

T

∫ T

0

v(t)2

R
dt ≡ v2

rms

R
, (17.2)

i.e., an rms AC voltage and a DC voltage would lead to the same power dissipation in a
resistor of resistance R, provided vrms = VDC . Thus, in noise considerations, one often
talks of a noise power proportional to v2

n or i2
n . Further, one is usually interested in the

299
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signal-to-noise ratio, which is customarily expressed in decibels

SN R = 10 log10

[
signal power

noise power

]
. (17.3)

Often, a power level is referred to 1 mW, e.g., a signal power of 1 µW is −30 dBm.
Whereas a domestic power supply delivers power at 50 or 60 Hz, random noise signals

have, or can have, power over a wide frequency range. If one measures the noise power
over a bandwidth � f , the spectral power density is

S = v2
n

� f
. (17.4)

√
S is the root spectral density, and is expressed in volts per root Hertz.

17.2 Noise inherent to transistors

17.2.1 Thermal noise

Electrons in a semiconductor are thermally agitated, and, under equilibrium conditions,
move randomly with Brownian motion and a mean thermal speed given by (4.29). Thus,
in equilibrium, the necessary condition of no net current is satisfied by the cancellation
of many, tiny, randomly directed currents. These currents are manifest as noise in any
resistive element, e.g., in the contact resistances of any transistor, in the base resistance
of an HBT, and in the channel resistance of a FET.

In 1928, Johnson determined experimentally that a voltage appeared across an open-
circuited resistor. The mean-square value of this voltage was found to be proportional
to the resistance and to the temperature. A theoretical basis for this result from thermo-
dynamical considerations was provided by Nyquist in the same year [1, Chapter 5]. The
spectral power density of thermal or Johnson noise is

Sth = 4kB T R , (17.5)

and the corresponding mean-square noise voltage is

v2
th = 4kB T R� f . (17.6)

Therefore, to represent a noisy resistor in an equivalent circuit, one can replace the real
resistor R with the Thévenin equivalent of an ideal, noiseless resistor R in series with
a voltage source of magnitude

√
4kB T R� f . Alternatively, a parallel combination of

noise-current source and noiseless resistor could be used, with the current source being
specified by

i2
th = 4kB T � f

R
. (17.7)

Note that thermal noise has a flat frequency response; hence its popular name of ‘white
noise’. It is heard as ‘audio hiss’, and seen as ‘TV snow’. As a yardstick, note that a
50 
 resistor generates a noise of ≈1 nV over a bandwidth of 1 Hz.
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Generally, the resistance of a block-shaped object of length L and cross-sectional area
A is

R = L

σ A
, (17.8)

where, using an n-type semiconductor as an example, the conductivity σ due to the
majority carrier electrons is (5.32)

σn = qnµe . (17.9)

Immediately, one can appreciate the importance of employing high-mobility material
for transistors intended for low-noise operation. HBTs, MESFETs, and HJFETs that
utilize III-V compound semiconductors (see Fig. 11.1) take advantage of this fact. The
design features of the HEMT discussed in Section 11.3 (no ionized-impurity scattering,
carrier confinement away from the heterointerface, carrier motion restricted to two
dimensions) give this transistor the capability of attaining the highest mobility of all,
which contributes greatly to its exceptional noise performance. Competition comes from
the HBT, which capitalizes on its geometrical features of large area and short base width
to produce a current path that is not constricted by a narrow channel.

17.2.2 Shot noise

Shot noise arises when there is a direct current in a material. It is due to the fact that the
charges, whose flow determines the current, are discrete and independent, i.e., the flow
is not continuous on a microscopic scale.

Let us consider electrons as the charge carriers. If one could observe the net number
of electrons crossing a particular plane in a conductor in a particular direction during
a specified time interval, then that number would vary slightly about some mean value.
This variation about the mean value would be the shot noise. It is not possible to detect
shot noise in a uniform conductor because it is obscured by the random thermal motion
of the electrons. For shot noise to be evident, the conductor must be part of a structure
that allows essentially unidirectional flow. An np-junction is such a structure. Under
forward bias, for example, the injection of each electron from the hemi-Maxwellian
distribution on the n-side of the junction into the p-side is an independent and random
event. Each injection event causes a random current pulse that can be detected in the
external circuit. If you could hear it, it would sound like buckshot (pellets) striking a
hard floor.

For an electronic current made up of random, independent pulses of average
value IDC , Fourier Analysis reveals that the electron shot noise current is given by
[1, Chapter 2]

i2
shot = 2q IDC� f . (17.10)

Evidently, this is also a white noise source. For a DC current of 1 mA, a noise of ≈18 pA
is generated over a bandwidth of 1 Hz.
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Forward biased np-junctions occur in HBTs, solar cells, LEDs and in MOSFETs
when operating in the sub-threshold regime. Thus, shot noise arises in all these cases,
e.g., it originates in the base and emitter currents of HBTs, and in the source current of
MOSFETs. For MOSFETs in the above-threshold regime, the source/body np-junction
is shorted by the inversion layer, in which case thermal noise in the resistive channel
dominates. Tunnelling is another transport mechanism in which the charge flow is
due to random movements of independent carriers. Therefore, gate leakage currents in
MOSFETs are another source of shot noise. HJFETs are less prone to this because of
the relatively large thickness of the barrier layer. However, if the gate/barrier Schottky
diode is forward biased, as in enhancement-mode HJFETs, there will be shot noise in
the gate current.

17.2.3 Flicker noise

If there are imperfections or defects in the crystalline semiconductor through which the
charge carriers flow, then the moving electrons (say) can be impeded, giving rise to a
fluctuation in the current that is called flicker noise. The deviations from crystalline
perfection can be regarded as producing local variations in, for example: the
recombination-generation rate in the bulk; the recombination velocity at a surface;
the carrier mobility, the carrier density or the bandgap in the bulk or at a surface; the
tunnelling rate between different regions in a device. Irrespective of the particular mech-
anism that is operative in any one device, the characteristic signature of flicker noise is
an inverse dependence on frequency

Sflick ∝ 1

f α
, (17.11)

where, often, α ≈ 1, hence the alternate name of 1/f noise. Sometimes this noise is
referred to as ‘pink noise’, in view of its existence at long wavelengths (low frequencies).

Let us consider, for example, the situation at the semiconductor/insulator interface of
a N-MOSFET. This is obviously an inhomogeneous region, within which local variations
in transport-related properties are to be expected. We will consider the situation depicted
in Fig. 17.1, where local variations in the electrostatic potential give rise to electron traps
of varying depth. Electrons can be captured in these potential wells, before being released
(by thermal emission) at some variable time τ later. It is reasonable to assume that τ is
longer for deeper wells; a relationship that has been used is [2]

τ = τ0eEa/kB T , (17.12)

where Ea is the activation energy (depth of a potential well (trap)). For a normalized
distribution of activation energies g(Ea) within the range bounded by the deepest trap
Ea2 and the lowest trap Ea1, and for a uniform distribution of activation energies within
this range, ∫ Ea2

Ea1

g(Ea) d Ea = 1 and g(Ea) = 1

Ea2 − Ea1
. (17.13)



P1: Trim: 174mm × 247mm Top: 0.498in Gutter: 0.664in

pulfrey_cup cuuk824/Pulfrey 978 0 521 51460 6 December 25, 2009 21:51

17.2 Noise inherent to transistors 303
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Figure 17.1 Illustration of capture, at various times t , and release, after various times τ , of
electrons from traps of varying depths caused by crystalline imperfections at a semiconductor
surface.

It can then be shown [2] [1, p. 126], that the spectral number density is

SN ( f ) = �N 2
kB T

(Ea2 − Ea1)

1

f
, (17.14)

where �N 2 is the variance of the number N of untrapped carriers contributing to
conduction in the channel. The key point here is that the noise spectrum has a 1/ f
dependence.

Traps and imperfections are often associated with interfaces, particularly between
poorly lattice-matched materials. Hence, 1/ f noise is much in evidence in MOSFETs.
In MESFETs, one side of the channel is defined by the ‘smooth’ edge of a depletion
region, rather than by a ‘rough’ semiconductor/oxide heterojunction, so flicker noise is
less evident in this transistor. In HJFETs, the use of lattice-matched materials, and a
2-DEG that keeps the centroid of channel charge away from the interface (see Fig. 11.8b),
lead to the possibility of very low 1/ f noise. In all FETs, the interface that defines the
channel has a length that is about as long as the gate length, so another requirement of
low-noise FETs is that L be small.

17.2.4 Induced gate noise

Noise in the channel of FETs, whether it be due to thermal noise from the resistive nature
of the channel, or to 1/f noise due to the ‘charging’ and ‘discharging’ of localized traps,
creates a time-varying local charge that couples capacitively to the gate electrode via
Cgs and Cgd . The impedance of these capacitive components decreases with frequency,
so the induced gate noise becomes prominent at high frequencies.
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Figure 17.2 General form of the spectral density for the case of uncorrelated noise sources.

17.2.5 Adding-up the noise

Imagine that two noise sources in a transistor are effectively in series. Because of the
mean-square representation of the noise, the total noise is

v2
n = v2

n1 + v2
n2 + 2vn1vn2 . (17.15)

If the noise sources arise from separate physical mechanisms they are independent of
each other, and are said to be uncorrelated. This is the case for all the noise mechanisms
discussed in this chapter, with the exception of gate-induced noise, which is correlated
with the noise in the drain current. In the uncorrelated case, the total noise is simply the
algebraic sum of each individual noise component. The overall spectral density will then
have the general form shown in Fig. 17.2. The frequency at which the extrapolations
of the white and pink noise terms intersect is called the 1/f corner frequency. In
HJFETs specifically designed to have low noise, this frequency may approach 1 GHz
for the drain-current noise. This is primarily because in HJFETs designed for high
mobility (HEMTs), the correspondingly high transconductance makes for a low channel
resistance, thereby reducing the principal intrinsic source of thermal noise. Additionally,
HJFETs are well-suited to low-noise applications because they have less shot noise than
HBTs and less flicker noise than MOSFETs. For these reasons we will concentrate on
the HJFET in the remainder of this chapter.

17.3 Representation of noise in an equivalent circuit

Noise is, essentially, a small signal, so it is natural to account for it in a transistor by
adding noise-voltage sources and noise-current sources, where appropriate, to the small-
signal equivalent circuit of the transistor. We consider the case of an HJFET intended
for a low-noise amplifier application at high-enough frequencies for flicker noise not to
be an issue. Additionally, for simplicity, we neglect any shot noise, such as might arise
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Figure 17.3 (a) Small-signal equivalent circuit for an HJFET at high frequencies. Noise sources
have been added to account for thermal noise in all the resistive components of the circuit.
(b) Equivalent representation of (a): the noise sources within the dashed box of (a) have been
replaced by two noise sources in the external input circuit. A signal generator at the input and a
resistive load at the output are also included.

from leakage current to the gate. Thus, only thermal noise sources are included in the
equivalent circuit shown in Fig. 17.3a. Each noise source is designated by the inclusion
of ‘N’ in its subscripted notation.

The basis for this circuit is the equivalent circuit for a FET shown in Fig. 14.12. The
differences are: the upper-case subscripts have been changed to the more conventional
lower-case; the prime has been dropped from the capacitor labels, but these elements
still represent total capacitances; the transcapacitance element has been omitted, which
implies that non-reciprocity is not important and justifies writing Csd as the more usual
Cds ; gdd has been written as the more traditional gds ; ‘intrinsic charging resistors’
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Rgd and Rgs have been included in series with the respective components of the gate
capacitance. These resistors are not easy to quantify a priori, and their values are usually
determined from measurements on an actual device. They represent the resistive paths
within the actual device connecting the gate to either the source or the drain. They are
relevant here because they are sources of thermal noise. Rgs is particularly important
because it is on the input side of the device, so its associated noise is amplified by the
transistor.

The noisy network in Fig. 17.3a can be replaced by an equivalent arrangement in which
the noise sources are separated from the physical components of their origin, and are
represented by two noise generators at the input to the now noiseless transistor network
(see Fig. 17.3b). For the two arrangements to be equivalent, the terminal currents and
voltages (noise and signal) must be the same. For this to happen, the sources representing
the total noise, iN T and vN T are likely to be correlated, even though the individual noise
sources in Fig. 17.3a are not.

Also shown in Fig. 17.3b are a signal source, which adds some noise to the system
via its series resistance, and a noisy resistor for the load.

17.4 Noise figure

Here, we employ the noise figure NF as a figure-of-merit by which a transistor’s noisiness
can be characterized. It does this by comparing the noise that the transistor itself generates
at the output of the network, to the noise at the output that comes from the amplification
of any noise in the input signal. In other words, the noise figure quantifies how the signal-
to-noise ratio is degraded as the signal and the input noise pass through the transistor.
The noise figure can be derived from the ratio of input and output signal-to-noise-
ratios:

N F = 10 log10

(
Si/Ni

So/No

)

≡ 10 log10

(
1

G A

No

Ni

)

= 10 log10

(
total output noise

amplified input noise

)

= 10 log10

(
1 + inherent noise

amplified input noise

)
≡ 10 log10(F) , (17.16)

where G A is the small-signal power gain that is available on account of the partic-
ular matching at both the input and the output, and F is defined as the noise factor.
Measurements of NF and F are usually reported at a standard temperature of T0 = 290 K.

We showed in Section 14.6 how the maximum available gain M AG of a transis-
tor depended on correctly matching the impedance of the signal source to that of the
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transistor’s input, and also on correctly matching the load to the output impedance.
Similarly, minimum noise is added to the output of a transistor when there is appro-
priate matching at the input and the output [3]. When NF is minimized in this way we
have the minimum noise figure N Fmin.

To derive an expression for N Fmin is an exercise in Circuit Analysis: the noise sources
in Fig. 17.3a have to be transferred to the input, the signal-source properties have to
be adjusted to give minimum noise, and the noise and signal at the output have to be
determined. To obtain a tractable, analytical solution various simplified models have
been proposed [4, Chapter 17]. Here, we start with the already approximate circuit of
Fig. 17.3a, and further simplify by ignoring the drain-related components, Cgd , Rd , and
Rgd . The remaining resistive/conductive components, Rg , Rgs , Rs , and gds , are then
treated as contributing thermal noise, each at a temperature that may not necessarily be
T0. In essence, this is the approach followed by Roblin and Rohdin [4, p. 592], and their
resulting equation is

Fmin = 1 + 2

(
f

f ′
T

)√
gds

Td

T0

[
Rgs

Tg

T0
+ Rg

Ta

T0
+ Rs

Ta

T0

]
, (17.17)

where f ′
T is the intrinsic fT when Cgd is ignored (see (14.40)), Ta is the ambient

temperature, and Td and Tg are adjustable model parameters for characterizing thermal
noise in the channel, at the drain-end and under the gate at the source-end, respectively.
Usually, Tg ≈ Ta , because Rgs is associated with the source end of the channel where
the field Ex is relatively weak. Towards the drain end, where the field is higher, velocity
saturation can occur. As we saw in Section 5.4, this phenomenon is associated with
significant transfer of energy to the lattice; this is modelled here by attributing a large
value to Td .

Fig. 17.4 shows plots of N Fmin from (17.17) for an HJFET with the parameters listed
in the figure caption. The upper and lower curves of the simulated set show the effect of
decreasing gm alone, and of decreasing both gm and Td , respectively. The intention is to
indicate that N Fmin is dependent on the applied biases: decreasing VGS while remaining
in the saturation mode would reduce the drain current and gm , whereas reducing VDS

would reduce Ex and, presumably, Td . Thus, there will be some set of bias conditions at
which N Fmin has a minimum value. The minimum noise figure for an actual low-noise
HEMT is also shown in Fig. 17.4.

17.4.1 Associated gain

Unfortunately, the source impedance that minimizes the noise to allow attainment of
N Fmin is not the same as the source impedance that maximizes the power gain. Thus,
the available gain under minimum-noise conditions is less than the maximum possible
gain M AG, which was introduced in Section 14.6. The available gain associated with
operating under minimum-noise conditions is called the associated gain. Fig. 17.5
illustrates the difference between the two gains for a high-performance, low-noise HJFET
from Triquint.
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Figure 17.4 NFmin for HJFETs. The line data are computed from (17.17) using the following
parameters kindly supplied by Hans Rohdin of Avago Technologies: gm0 = 78.7 mS,
gds = 3.25 mS, Cgs = 42.65 fF, Rs = 7 
, Rgs = 0.1 
, Rg = 6.42 
, f ′

T = 264 GHz,
Tg = Ta = T0 = 290 K, Td0 = 3100 K. The symbol data is from a low-noise, 150-nm
gate-length, AlGaAs/GaAs HEMT from Triquint, courtesy of Tony St. Denis. The gate is
200 µm wide, VDS = 1 V, ID = 10 mA.
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150-nm gate-length, AlGaAs/GaAs HEMT from Triquint, courtesy of Tony St. Denis. The gate
is 200 µm wide, VDS = 1 V, ID = 10 mA for the associated gain measurement and 15 mA for the
MSG/MAG measurement.



P1: Trim: 174mm × 247mm Top: 0.498in Gutter: 0.664in

pulfrey_cup cuuk824/Pulfrey 978 0 521 51460 6 December 25, 2009 21:51

References 309

Exercises

17.1 Fig. 17.4 compares minimum-noise-figure calculations from (17.17) with mea-
sured data from a low-noise HEMT from Triquint. This measured data is given in
the table below. The measured fT for this transistor is 135 GHz, and can be taken
as the intrinsic value.

Use this value of fT in (17.17), along with values for the other parameters
from the caption to Fig. 17.4, and plot both the measured and calculated data on
a graph similar to Fig. 17.4.

Perhaps you will be as surprised as I was that the two curves are in such good
agreement.

Improve the fit by slightly varying the adjustable parameters Tg and Td .

f NFmin f NFmin f NFmin

(GHz) (dB) (GHz) (dB) (GHz) (dB)

1 0.04 36 1.32 72 2.28
4 0.16 40 1.46 76 2.38
8 0.32 44 1.58 80 2.48

12 0.48 48 1.68 84 2.56
16 0.64 52 1.8 88 2.64
20 0.78 56 1.9 92 2.7
24 0.92 60 2 96 2.78
28 1.06 64 2.1 100 2.86
32 1.2 68 2.2
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18 Transistors for the future

Predicting the future is the realm of prophets and gamblers. Generally speaking,
engineers belong to neither of these groups. However, it is evident that the trend
in high-performance transistors is towards smaller and smaller devices, so we might
reasonably expect this to continue into the near future. This miniaturizing trend has led,
in the early part of the 21st century, to much talk about nanoelectronics. In my opinion,
nanoelectronics does not mean, contrary to popular belief, merely the scaling down of
transistors to devices with feature sizes of the order of tens of nanometres. If it did,
then present-day devices, such as InGaP/GaAs HBTs with basewidths of around 30 nm,
Si MOSFETs with channel lengths of ≈40 nm, and InAlAs/InP HJFETs with channel
thicknesses of a few nanometres, would already qualify as nanotransistors.

What nanoelectronics implies, to me at least, is the fabrication of transistors from the
‘bottom up’, rather than from the ‘top down’. The latter process is the one that applies
to all the HBTs, MOSFETs, and HJFETs discussed in earlier chapters: it involves the
making of something small from something large using photolithographic masking
techniques. Contrarily, a true nanotransistor is built-up from something even smaller,
such as a molecule or a nanoparticle. This opens up opportunities for new methods of
self-assembly (perhaps using biological recognition), and for new 3-D circuitry (perhaps
using a molecular backbone), that cannot be matched using conventional processing
techniques [1].

Smaller transistors, as explained throughout this book, are desired because they
enable portable, higher performance electronic products, for which much of the world’s
population appears to have a craving. One of the difficulties that arises with densely
packed transistors is heat dissipation, as discussed in Section 13.1.10. One way in
which future transistors might avoid this problem is by using very few electrons. An
extreme example of this is the single-electron field-effect transistor (SET), in which
the drain current is due to tunnelling of electrons that are accumulated singly in a
capacitor ‘island’ between the closely spaced source and drain [2]. Another example is
the molecular switch, involving a voltage-controlled oxidation/reduction reaction of a
complex molecule, each end of which is connected to an electrode [3]. Another way of
reducing power would be to not rely on electron transport, but rather on the change of
spin of electrons [4]. Clearly, such a device would also be very fast. Although ‘spin-
FETs’, SETs, and molecular switches have been under investigation for many years,
as the dates of the cited references attest, the prospect of commercial devices is not
imminent.

310
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Still within the realm of nanotechnology, but returning now to the traditional, gate-
controlled, multi-electron-transfer type of device, two candidate nanotransistors are
FETs utilizing either semiconducting nanowires (Si, Ge, GaN, InAs are being tried), or
nanotubes (carbon). The cylindrical geometry of these devices begs an all-around gate,
which would be the ultimate electrostatic solution to the short-channel-effect problem.
The use of materials such as InAs and C, in which an extremely high mobility can be
obtained, would be advantageous as regards many features: ON-current, transconduc-
tance, fT , fmax, noise figure, and parasitic resistance.

The small diameters of these embryonic transistors (≈1–5 nm), and the small channel
lengths (≈10 nm), which can be anticipated if these devices are to be significantly smaller
than planar Si MOSFETs, mean that the active volume of these transistors is going to be
very small. This raises an interesting, and very practical, question: what is the achievable
repeatability of dopant incorporation in such small structures? For example, a wire with
a length of 10 nm, a radius of 2 nm, and a high-ish doping density of 8 × 1018 cm−3,
would contain approximately 1 dopant atom!

One way to circumvent the issue of fluctuations in doping density would be to avoid
using extrinsic semiconductors. For example, an intrinsic semiconductor could be used
for the channel, and metals could be employed for the source and drain regions. We
highlight several properties of such a Schottky-barrier nanoFET later in this chapter.
Such a transistor, if made from a nanocylinder, would be essentially a 1-D structure,
and if its length were short, then there would be the possibility of ballistic transport
between the source and drain. Therefore, in the next two sections, we describe some
basic properties of 1-D semiconductors, and develop an expression for the drain current
due to ballistic transport in a 1-D FET.

To appreciate the length scale at which ballistic transport might become operative, con-
sult (5.45), which is an expression for the equilibrium mean-free-path length l̄0 between
collisions in terms of the mobility and the effective mass. Taking near-intrinsic values
for mobility (0.12 and 0.8 m2 V−1 s−1 for Si and GaAs, respectively), and corresponding
effective masses of 0.19 m0 and 0.066 m0, gives l̄0 ≈ 25 nm for Si, and l̄0 ≈ 100 nm for
GaAs.

18.1 1-D carrier basics

In this section expressions are derived for the following one-dimensional properties: the
density of states, the electron concentration, the effective density of states and the mean,
unidirectional thermal velocity. These differ from the corresponding 3-D expressions
given in Chapter 3 and Chapter 4 mainly by the order of the Fermi-Dirac integrals
involved.

18.1.1 Density of states

We assume that the wire or tube is long enough so that periodic boundary conditions
can be applied, in which case the spacing between states in k-space is 2π/L (from
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Section 2.4), where L is the length of the semiconductor, and k is the wavevector in
the longitudinal direction. Allowing for spin, there can be two electrons per momentum
state; therefore, the number of states per unit real-space length in a length δk of k-space
is simply

g(k)δk = δk

π
. (18.1)

To find the number of states in an equivalent element δE in energy, note that whatever
variable we use, k or (E − EC ) in this case, the actual spatial density of states must be
unchanged. Thus, ∫ ∞

−∞
g(k) dk =

∫ ∞

0
g(E − EC ) d(E − EC ) . (18.2)

From this it is clear that

g(E − EC )δ(E − EC ) = 2g(k)δk = 2

π
δk . (18.3)

Making use of the general relationship for the band-determined carrier velocity (2.23),
we obtain the desired expression for the number of states per unit length and unit energy,
i.e., the 1-D density of states:

g(E) = 4

hv(E)
E ≥ EC . (18.4)

Assuming a parabolic band, (2.31) can be used to obtain an explicit relation between g
and E :

g(E) = 2

h

√
2m∗

(E − EC )
E ≥ EC . (18.5)

There is no ambiguity about the value to take for m∗ as the system is one-dimensional.
Note that g in the 1-D case goes to infinity at the conduction-band edge (see Fig. 18.1).

In fact, because we are considering wires or tubes of finite radius, and because this
radius is very small, there will be quantum confinement of the wavevector in the radial
or circumferential directions, respectively. For a tube of circumference c, for example,
the allowed circumferential wavevectors are kc = nπ/c, where n ≥ 1 is an integer. For
each allowed value of kc there is an E-k band called a sub-band. Several of these are
shown in Fig. 18.1. The associated g(E) profile has a sawtooth appearance.

18.1.2 Carrier density

The equilibrium carrier density for one sub-band follows from (4.9). Specifically, for
electrons,

n0 =
∫ ∞

EC

g(E) f0(E) d E ≡
∫ ∞

0
g(a) f0(a)kB T da , (18.6)
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Figure 18.1 EC -k relation for several sub-bands and positive k, and density of states g for two
carbon nanotubes of different diameter: d = 1.25 nm (solid line), d = 1.02 nm (dotted line).
Courtesy of Leonardo Castro, ex-UBC.

where, as used in Section 4.3, a = (E − EC )/kB T . Taking f0 as the Fermi-Dirac
distribution function gives:

n0 = 2

(
2πm∗kB T

h2

)1/2

F−1/2(aF ) ≡ NCF−1/2(aF ) , (18.7)

where aF = (EF − EC )/kB T . The second form of this equation is the 1-D equivalent of
(4.10); it serves also to define the 1-D effective density of states NC corresponding to the
3-D version in (4.11). Evidently, the two NC ’s differ only in the power of the exponent.

18.1.3 Mean, unidirectional velocity of a 1-D equilibrium distribution

Following the procedure described for the 3-D case in Section 4.5, it is straighforward
to show that the mean thermal speed for a 1-D equilibrium distribution is

vth =
√

2kB T

πm∗
F0(aF )

F−1/2(aF )
. (18.8)

This equation is the 1-D equivalent of (4.29).
Because we are working in only one dimension, the construct for obtaining vR from

vth is a line, rather than a sphere, which was the case for 3-D (see Fig. 4.5). Thus, in
the 1-D case, the mean, unidirectional velocity vR of the entire distribution is simply
vth/2. The mean, unidirectional velocity of the distribution that is moving in the positive
direction is 2vR ; thus it is exactly the same as vth .

The 3-D and 1-D magnitudes of 2vR are compared in Fig. 18.2. At low carrier
concentrations there is essentially no difference between 2vR in the two cases. But as the
carrier concentration increases, the electrons in the 1-D distribution move increasingly
faster.
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Figure 18.2 Comparison of the mean, unidirectional equilibrium thermal velocity for 3-D and 1-D
semiconductors. T = 300 K, m∗ = 0.1m0.

18.2 1-D ballistic transport

Consider the case of electrons being injected into a 1-D semiconductor from two 1-D
metallic contacts: the source on the left of Fig. 18.3a, and the drain on the right.
The electrons are at an energy E that is greater than the energy EC of the edge of
the first sub-band in the semiconductor. Quantum mechanical reflection at the two
metal/semiconductor interfaces leads to some of the incident flux from the source JS

being reflected and some being transmitted into the drain. An analagous situation pertains
to electrons in the incident flux from the drain JD . Here, the subscript indicates the origin
of the carriers (source or drain). Adding up the two fluxes in the drain, for example,
gives the total spectral current of electrons:

Je(E) = T (E)JS(E) + [R(E) − 1] JD(E)

= T (E) [JS(E) − JD(E)] , (18.9)

where T (E) and R(E) are the transmission and reflection probabilities, respectively, at
energy E for the entire system.

The incident electron currents at some energy E are simply the products of the charge
and the velocity of electrons with k > 0. At the source, for example,

JS(E) = −q
gS(E)

2
fS(E) · v(E) , (18.10)

where the factor of 1/2 in the density of states arises because only states in the positive-
going half of the distribution contribute to the injection; fS(E) is the Fermi-Dirac
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Figure 18.3 Incident, reflected, and transmitted components of electrons in currents originating
in the source (JS(E)) and in the drain (JD(E)). T (E) and R(E) are transmission and reflection
probabilities, respectively. (a) At equilibrium. (b) At a sufficiently large bias VDS for the
drain-originating electrons to be totally reflected.

distribution function for electrons in the source. JD(E) can be written analogously.
Substituting into (18.9), and making use of (18.4), leads to the Landauer expression for
the electron current:

Je = −q
2

h

∫
E

T (E) [ fS(E) − fD(E)] d E . (18.11)

Notice how g and v are no longer explicit in this equation because their product is a
constant.

In Fig. 18.3a the Fermi levels in the source and drain are at the same energy, so (18.11)
correctly predicts that the current is zero. Now consider applying a bias VDS > 0. As
Fig. 18.3b shows, EF D drops below EF S , so |Je| increases. Eventually, the barrier for
electron injection from the drain is so high that the current saturates at

IDsat ≡ Je at saturation = −q
2

h

∫
E

T (E) fS(E) d E . (18.12)

In a FET, this current is altered by applying a gate bias: this varies T (E) by changing
the shape of the EC profile.
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18.2.1 Dimensions for current density

Note that in (18.12) we made no distinction between the current and the current density
(except for a conventional sign). This is because, in a 1-D system they have the same units.
To appreciate this refer to (3.26) for the fundamental expression for carrier concentration,
multiply it by −qv to get a current density, and the result is

Je(α) = −q




∑
filled states

vk ⇒ −q




2
(2π )α




∫
�k

f (�k)v�k d�k , (18.13)

where α is the dimensionality of the volume under consideration, and f is the distribution
function. Thus, the units are A m−2, A m−1, A, for α = 3, 2, 1, respectively.

18.2.2 Local density of states

An informative way of following the injection of charge into the 1-D semiconductor is
via the local density of states LDOS. This is defined as

GS(x, E) = ψS(x, E)ψ∗
S (x, E) , (18.14)

where

ψS(x, E) = AS(x, E)eikS (x,E)x (18.15)

is the wavefunction at some point x and some energy E of an electron issuing from the
source. Thus, the LDOS refers in this case to the states in the semiconductor that are
available for occupancy by electrons injected from the source. An example of the LDOS
for a Schottky-barrier carbon nanotube FET is shown in Fig. 18.4, where AS(x, E) has
been normalized as described in the next subsection. There is a large change in k as
electrons enter and leave the semiconductor, and this gives rise to resonances and quasi-
bound states1. Five levels of quasi-bound states are readily identifiable in this example.
The distortion is caused by the presence of a drain voltage: this produces a potential
variation of the first conduction sub-band edge, which is superimposed on the figure.
There is injection from both the source and the drain contacts, as evinced by the states
within the bandgap at each end of the device.

18.2.3 Evaluating the charge

The actual charge due to source-injected electrons, for example, is

QS(x, E) = −qGS(x, E) fS(E) . (18.16)

To evaluate this we need to know ψS(x, E)ψ∗
S (x, E) absolutely. This need does not

arise when evaluating the current because that depends on the wavefunctions via T (E),
which is a ratio, not an absolute value. Thus, we need to normalize the amplitude of the
wavefunction.

1 The states are not fully bound, as in a deep potential well for example, because electrons in the states do
escape to the contacts.
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Figure 18.4 LDOS for a carbon nanotube FET with tube of length 20 nm and Schottky-barrier
source and drain contacts. VDS = 0.5 V and VGS = 0.9 V. The profile of the edge of the first
conduction sub-band is shown. Courtesy of Leonardo Castro, ex-UBC.

The usual procedure of normalizing via
∫



ψψ∗ d
 = 1 is not possible here because

the electron is not confined to a known volume. We have open boundary conditions at
the contacts, which are effectively regions of semi-infinite length, so we cannot assume
that the entire wavefunction is confined to the vicinity of the semiconductor. Instead, we
normalize via equating the Landauer current to the probability density current [5]. The
latter follows from (5.52), and, for the source-originating electrons that have reached
the drain, the probability density current is

JP = −q
�kS(D, E)

m∗(D)
|AS(D, E)|2 . (18.17)

In the expression for the Landauer current, T (E) is given in the context of our example
by

T (E) = kS(D, E)

kS(S, E)

m∗(S)

m∗(D)

|AS(D, E)|2
|AS(S, E)|2 , (18.18)

where the subscript S defines the origin of the injected electrons as the source; their
wavevector is kS and the amplitude of the incident wavefunction is |AS|. Within the
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brackets ( ), S or D denotes the position (source or drain) at which the particular
property needs to be determined. Inserting into (18.11), and equating to the current
given by (5.52), we obtain a definite value for the previously arbitrary amplitude:

|AS(S, E)|2 = m∗(S)

kS(S, E)

1

π�2
fS(E) ≡ gS(E)

2
fS(E) . (18.19)

Therefore, the desired relationship between probability density and charge for source-
originating electrons is

QS(x, E) = −q
gS(E)

2
fS(E)ψ̃S(x, E)ψ̃∗

S (x, E) , (18.20)

where ψ̃S is the un-normalized wavefunction.

18.3 Master set of equations for 1-D simulations

(5.24) is the master set of equations for use in 3-D systems that are large enough to
be treated ‘semi-classically’, i.e., quantum-mechanical phenomena, such as reflection,
resonance, and tunnelling, can be ignored, and microscopic phenomena, scattering for
example, can be represented by some average property (mobility in this case). In our
brief treatment of 1-D nanoelectronic systems we have seen that quantum phenomena
are very much in evidence. In particular, ensemble-averaged quantities such as mobility
and vR are not usually employed because we try to keep track of each electron in its
state k at energy E . Thus, Quantum Mechanics is very much to the fore, and this gives
the new master set of equations a different appearance:

d2V (x)

dx2
= − Qe(x)

ε

Qe(x) = −q

∫
E

[GS(x, E) fS(E) + GD(x, E) fS(E + qVDS] d E

Je(E) = −q
2

h
T (E) [ fS(E) − fD(E)]

Eψ(x, E) =
[

EC (x)ψ(x, E) − �
2

2m∗
d2ψ(x, E)

dx2

]
, (18.21)

where V is used for potential in order to avoid confusion with the wavefunction ψ .
The effective-mass form of Schrödinger’s equation is used in this example, and, for
simplicity, the charge and the current are restricted to electrons.

A self-consistent solution to the equations of Poisson and Schrödinger is sought. The
charge Qe is the link between these two equations, and the Landauer current is used in
the normalization of the wavefunction ψ , as described in the previous section. Generally,
a charge profile Qe(x) is chosen, and Poisson’s equation is solved for V (x), subject to
appropriate boundary conditions. In a truly 1-D system these would be the potentials on
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the end contacts. Taking the source as reference:

V (0) = 0 and V (L) = VDS + �S − �D

q
, (18.22)

where � is a work function, and the ends of the contacts (x = 0 on the source side,
and x = L on the drain side) are determined by the edges of the space-charge regions
at the metal/semiconductor junctions. The work-function difference term should be
recognizable from Chapter 10 as the built-in voltage of the system.

The resulting V (x) is then used in the Schrödinger equation to solve for ψ(x), from
which a new Qe(x) is found via the LDOS. The process is iterated until convergence at
the desired tolerance is obtained.

18.4 Comparison of 1-D and 2-D currents

In Fig. 18.2 we showed that there is some slight advantage as regards electron mean
velocity in going from a 3-D- to a 1-D-structure. A more practical comparison would be
between the currents in sytems of different dimensionality. This comparison is not easy
to make for at least two reasons: (i) the potential profiles, and hence T (E), are likely to be
significantly different; (ii) the current densities have different dimensions. Nevertheless,
we’ll attempt to make a comparison between the currents in 1-D and 2-D systems. Such
a comparison is relevant to FETs as the channel in MOSFETs is essentially a charge
sheet, as discussed in Section 10.3.2. We circumvent the first difficulty by assuming that
T (E) = 1 for all energies, i.e., we will be comparing the maximum theoretical currents.

Setting T (E) = 1 in (18.12) and expressing the integral as a Fermi-Dirac integral
gives

IDsat (1D) = −q
2

h
kB TF0(aF ) . (18.23)

By setting the transmission probability to unity we are removing the quantum-
mechanical features from the treatment. Therefore, we could derive (18.23) by a classical
treatment of the type we employed to get the current in 3-D systems. By ‘classical’ we
mean taking an average value for the electron velocity. The relevant expression for the
current density is

JDsat = −q
n0

2
2vR . (18.24)

We do not have yet an expression for the current in a classical 2-D system. However, we
can obtain such an expression for a 3-D system by substituting for n0 from (4.10) and
(4.11), and for vR from (4.29):

JDsat (3D) = −q
22

h3
(kB T )2m∗πF1(aF ) . (18.25)

It is possible to derive an expression for JDsat (2D) directly, but, instead, let us use
(18.23) and (18.25) to infer a general expression for the maximum current in terms of
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Table 18.1 Values for the coefficients to be used
in (18.26) for the maximum current in systems of
a given dimensionality.

System α β γ

1-D 1 1 0
2-D 2 3

2
1
2

3-D 3 2 1

three coefficients, α, β, γ , that are dimension-dependent:

JDsat (αD) = −q
2β

hα
(kB T )β(m∗π )γFγ (aF ) . (18.26)

The appropriate values for the coefficients for the different dimensionalities are given in
Table 18.1.

To make a comparison of currents in 1-D and 2-D, rather than current densities, we
need to multiply the 2-D expression by the width Z of the channel. Here, we elect
to take Z = 2d, where d is the diameter of the cylindrical semiconductor of the 1-D
system. We use 2d rather than d because if we imagine assembling lots of nanowires or
nanotubes in parallel, then some separation between them is needed to ensure that the
gate electrode, rather than the neighbouring semiconductors, is the main determinator
of the electrostatic conditions in each nanocylinder. Under these conditions, the ratio of
maximum theoretical currents for 1-D and 2-D systems is

IDsat (1D)

IDsat (2D)
= h

2d

1√
2kB T m∗π

F0(aF )

F1/2(aF )
. (18.27)

To obtain a quantitative comparison, we consider two cases using parameters for carbon
nanotubes: d = 1 nm, m∗ = 0.08m0; and d = 3 nm, m∗ = 0.03m0. Results are shown in
Fig. 18.5. In this example there is some advantage in terms of maximum theoretical cur-
rent to employing a 1-D semiconductor. Let’s consider the case of (EF − EC ) = 10kB T ,
which corresponds to an electron concentration of ≈0.5 nm−1 in the 1-D case, and to
≈9 × 1012 cm−2 in the 2-D case. The advantage in current of the 1-D case over the
2-D case, for the example of d = 1 nm, m∗ = 0.08m0, is about 3 times. The theoretical
current in the nanotube in this case is ≈20 µA.

To put the latter number into some sort of practical perspective, realize that Si N-FETs
in the 45-nm technology of 2009 can attain IDsat values of about 1.5 mA µm−1. Thus,
for a width equivalent to 2d = 2 nm, the current would be 3 µA. The carbon nanotube
FET looks very good in this comparison, and comes out even better when it is realized
that the lowest conduction sub-band in carbon nanotubes is doubly degenerate, and that
states could be populated in higher-order sub-bands. Thus, the maximum theoretical
current is at least ≈40 µA. However, it would be prudent to keep in mind that the carbon
nanotube figure is a theoretical maximum value, whereas the Si figure has been attained
in practice.
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Figure 18.5 Comparison of 1-D and 2-D currents. The width of the 2-D semiconductor is 2d, and
results for two different cases are shown.

18.4.1 Energy dissipation in ballistic transistors

The picture we have presented of ballistic transport is of an electron leaving the source
at energy E and arriving at the drain at the same energy. Thus, there is no energy loss in
the intervening semiconductor. This means that it should be possible to operate ballistic
transistors at enormous current densities without risk of the device burning out. However,
with reference to Fig. 5.7, if the metallic contacts to the semiconductor are to remain in
a near-equilibrium state, then the electrons injected into the drain must eventually lose
their excess energy in thermalizing collisions. Thus, the contacts get hot and become
the defining region for the safe, operable current density.

18.5 Novel features of carbon nanotube FETs

In the comparison of currents made in the previous section, carbon nanotube field-effect
transistors (CNFETs) were pitted against Si MOSFETs. The comparison is interesting,
but dangerous: it is very premature to conclude that CNFETs can take over from Si
MOSFETs as the upholders of Moore’s Law. Carbon nanotube development is still in
the laboratory stage, whereas Si MOSFET technology is highly advanced, and has proven
capable of putting hundreds of millions of transistors on a chip, and of having that chip
work reliably for many years. Perhaps it would be more useful to focus on any novel
features of nanotransistors that could enable applications which seem beyond both Si
MOSFETs and the other modern transistors treated in this book? Two such features of
CNFETs are mentioned very briefly below.
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Figure 18.6 Bias-dependent small-signal properties of a Schottky-barrier CNFET using a
nanotube of diameter =1.26 nm, length =20 nm; source and drain work functions =3.9 eV;
VDS = 0.5 V. (a) Gate-related capacitances; (b) transconductance; (c) fT . From Castro et al. [6],
C© 2005 IEEE, reproduced with permission.

18.5.1 Quantum capacitance and transconductance

The LDOS shown in Fig. 18.4 become filled according to the positions of the contact
Fermi levels EF S and EF D . In the instance shown, the energy of the first quasi-bound
state is close to EF D: this means that charge is injected into the semiconductor from
the drain. The energy of the quasi-bound states is determined by the gate-source voltage
VGS , which is ≈0.9 V in this case. A change in semiconductor charge via the drain due
to a change in gate voltage is represented by a capacitance CDG , using the notation
of Chapter 12. As VGS is reduced, the edge of the first conduction sub-band is raised,
and injection from the drain diminishes. Thus CG D is reduced. Further reduction in
VGS eventually aligns the energy of the first quasi-bound states with the source Fermi
level, resulting in a peak in the source/gate capacitance CSG . These capacitances are
called quantum capacitances because they arise from quantum phenomena (LDOS),
rather than from the usual, merely electrostatic interactions that are responsible for
metal/insulator/metal capacitance, for example. Examples of this bias dependence of
the capacitances in a CNFET are shown in Fig. 18.6a.
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Figure 18.7 Energy band diagram for a Schottky-barrier CNFET using a nanotube of
diameter =1.26 nm, length =20 nm; work functions of the nanotube and all metals =4.5 eV;
VDS = 0.4 V. Hole injection at VGS = 0.05 V (dotted line and arrow); hole and electron injection
at VGS = 0.2 V (solid lines and arrows); electron injection at VGS = 0.35 V (dashed line and
arrow). From Castro et al. [7], C© 2004 SPIE, reproduced with permission.

Part (b) of the figure shows that there is bias dependence in the transconductance also.
Again, as VGS is increased, the band edge is ‘pushed down’ and gm shows a peak when
the energy of the first quasi-bound state is close to EF S . Further increase in VGS lowers
the barrier for electron injection into the drain. Thus, the overall current of electron flow
from source to drain decreases, and so does gm .

The net effect of these changes in capacitance and transconductance is an interesting
bias-dependence in fT , as shown in Fig. 18.6c. Perhaps there is some useful application
that could exploit this novel feature?

18.5.2 Ambipolarity

So far in this chapter we have neglected holes, but in CNFETs they can be important.
Because the conduction-band structure and valence-band structure are symmetrical in
carbon nanotubes, holes can be just as easily injected into a nanotube as electrons,
providing the work functions of the two contacts are favourable.

Fig. 18.7 shows the situation for a Schottky-barrier CNFET in which the work func-
tions of the source, drain, gate and nanotube are all the same. VDS is fixed and the profiles
of the first conduction and valence sub-bands for three values of VGS are shown. At low
VGS there is hole injection from the drain via tunnelling. Thus, the device is operating
like a P-FET. This current diminishes as the barrier at the drain thickens on increasing
VGS . However, the overall current does not keep on decreasing, as in a Si MOSFET (see
Fig. 10.15 for an N-FET), because the barrier at the source becomes thinner, enabling
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Figure 18.8 Gate characteristics at VDS = 0.4 V for the CNFET used for Fig. 18.7, but with
gate work function =4.2 eV, and various source/drain work functions: 3.9 (solid line),
4.2 (dotted line), 4.5 eV (dashed line). From Castro et al. [7], C© 2004 SPIE, reproduced with

permission.

electron flow by tunnelling from the source. Therefore, the overall log ID-VGS curve
shows a minimum, as illustrated in Fig. 18.8.

Because of this inability to attain a very low OFF current, a CNFET with this partic-
ular set of work functions would make a poor transistor for digital-logic applications.
However, the ambipolarity of the device, i.e., its ability to inject both electrons and
holes, means that, in long devices, there is likely to be significant electron-hole recom-
bination within the nanotube. As the bandgap is direct in carbon nanotubes, this means
that there can be light emission. Further, because the relative amounts of electron and
hole injection depend on the band-bending at the two contacts, i.e., on VGS , then the
position along the tube of the maximum in the n(x)p(x)-product will be determined by
the gate bias. Thus, we have a light-emitting transistor with voltage control of the site
of emission. Surely there is an application for this novel phenomenon?

Exercises

18.1 Expressions for the mean, unidirectional velocity of electrons in 1-D and 3-D
equilibrium distributions appear in the text.
(a) Write down these expressions, and from them infer the expression for the

mean, unidirectional velocity of electrons in a 2-D equilibrium distribution.
(b) Confirm your intuition by deriving an expression for the 2-D vR .

18.2 It is instructive to calculate the current in a 1-D nanosystem using (18.11).
To do this, consider an asymmetrical rectangular barrier, of the type shown in

Fig. 5.8, and imagine this to represent a 1-D transistor, with Region 1 being the
source, Region 2 being the channel, and Region 3 being the drain.
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For a particular example, take the energies in eV to be 0, 0.1 and −0.5 for U1,
U2 and U3, respectively. Make the channel 10 nm long, take m∗ = 0.1m0 in all
regions, and evaluate the transmission probability T (E) for energies up to about
10kB T above U1.
(a) You should find that T (E) peaks at values close to 1 at energies of 137, 251

and 443 meV.
(b) Now use (18.11) to get the spectral current density. You should find it peaking

at about 131 meV.
(c) Finally, integrate the spectral current density to find that the current in this

example is about 19 nA.
18.3 In Exercise 14.11 the small-signal y-parameters for a 2-port network were intro-

duced, and used to examine an intrinsic MOSFET. Adding the parasitic resistances
of the source, drain and gate to the circuit allows the extrinsic performance of
the device to be examined. It is easier to add series resistances to an impedance
network than it is to add them to an admittance network, so it is usual to employ
z-parameters for the extrinsic case [8]. The resulting extrinsic z-parameters are:

z22e = y33/Y + Rsd

z23e = −y23/Y + Rs

z32e = −y32/Y + Rs

z33e = y22/Y + Rsg

Y = y33 y22 − y32 y23 , (18.28)

where Rsg = Rs + Rg and Rsd = Rs + Rd .
Actual measurements on high-frequency devices usually employ s-parameters,

as mentioned in Section 14.8. Conversions between all 2-port parameters are
well-documented [9].

Here, we wish to examine the model parameters of a nanowire field-effect
transistor. The measured s-parameters are given in the table below. The source
and load impedances were 50 k
.
(a) Use the conversion formulae to obtain the z-parameters and the y-parameters

at the given frequencies.
(b) Plot the appropriate functions of the z- or y-parameters on a graph from which

it is possible to estimate fT .
(c) Plot Mason’s Unilateral Gain as a function of frequency and extrapolate to

find fmax.
(d) Given that the resistances of the source, drain and gate are all 1 k
,2 estimate

the following device parameters: Cgs , Cgd , Csd , Cm , gm , gdd . The smallness of
the capacitances will give you further appreciation of the scale of nanodevice
properties.

2 Yes, these are very large. That’s because it’s a nanowire transistor. It’s also why the source and load
impedances for the s-parameter measurement are so high.
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(e) Use your ‘reverse-engineered’ parameter values from the previous question
to evaluate fT from (14.40). Hopefully there is excellent agreement with the
value computed above from part (b).

f s33 s32

(GHz)

1 0.99985150454822 − 0.01634532553216i 0.00001727511869 + 0.00187960147356i
4 0.99762701570972 − 0.06530039195981i 0.00027605948194 + 0.00750899184418i

10 0.98527101475528 − 0.16212743411278i 0.00171348446647 + 0.01864175295064i
40 0.79015015095037 − 0.57753956483546i 0.02441224807920 + 0.06630950138903i

100 0.18708292391116 − 0.89547971380160i 0.09455821595567 + 0.10197010357623i

f s23 s22

(GHz)

1 −2.64657736369830 + 0.02617069629805i −0.32343549257613 − 0.00307926667866i
4 −2.64300928913059 + 0.10455300242331i −0.32385070665862 − 0.01230196618653i

10 −2.62319029818602 + 0.25958029893259i −0.32615703010880 − 0.03054522445715i
40 −2.31021796439278 + 0.92448253847297i −0.36257812914205 − 0.10893550076219i

100 −1.34292424363059 + 1.43160307403116i −0.47515899209335 − 0.16999464828556i
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19.1 Appendix A: Physical constants

Constant Symbol Value Units

Boltzmann’s constant kB 1.38 × 10−23 J/K
Dirac’s constant � 1.05 × 10−34 J s
Elementary charge q 1.6 × 10−19 C
Electron rest mass m0 9.1 × 10−31 kg
Electron volt eV 1.6 × 10−19 J
Permittivity of free space ε0 8.85 × 10−12 F/m
Planck’s constant h 6.63 × 10−34 J s
Speed of light in vacuum c 3 × 108 m/s
Thermal energy at 300 K kB T 0.0259 eV
Thermal voltage at 300 K Vth or kB T/q 0.0259 V

19.2 Appendix B: Selected material properties

This appendix indicates where to find information on the numerical values of those
material properties that are used in the figures and examples in this book, or are required
to complete some of the exercises.

The symbols for the properties are also listed, thereby providing a glossary of selected
terms.

Those values that are listed here, and which do not appear elsewhere in the book,
come mostly from Semiconductors on NSM; available online: [http://www.ioffe.rssi.
ru/SVA/NSM/Semicond/].

The polarization properties of AlGaN come from Ambacher et al., J. Appl. Phys., vol.
85, 3222–3233, 1999.

For evaluating Fermi-Dirac integrals, please see: R. Kim and M.S. Lundstrom,
Notes on Fermi-Dirac Integrals, 3rd Edn., posted 23 September, 2008. Online
[http://nanohub.org/resources/5475/].
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Diffusion length Si compute from
√

Dτ

Le, Lh GaAs see Fig. 9.3
AlGaAs & InGaP take to be same as GaAs

Diffusivity Si see Fig. 5.3
De, Dh GaAs see Fig. 5.3

AlGaAs & InGaP take to be same as GaAs

Drift velocity Si see Fig. 5.2
vde, vdh GaAs see Fig. 5.2

InGaAs & Ge see Fig. 11.1

Effective density of states Si see Table 4.1
NC , NV GaAs see Table 4.1

AlGaAs & InGaP take to be same as GaAs

Effective mass Si see Section 5.4.2 and Table 4.2
(conductivity) GaAs see Section 5.4.2 and Table 4.2
m∗

e,CON, m∗
h,CON InGaP take to be same as GaAs

Effective mass Si see Table 3.2
(density of states) GaAs see Table 3.2
m∗

e,DOS, m∗
h,DOS InGaP take to be same as GaAs

Effective mass Si see Table 2.1
(band structure) SiO2 0.3
m∗

e/m0, m∗
h/m0 GaAs see Table 2.1

InGaP take to be same as GaAs
Alx Ga1−x As m∗

e = 0.067 + 0.083x, m∗
h = 0.48 + 0.31x

Electron affinity Si 4.01 eV
χ SiO2 0.9 eV

GaAs 4.07 eV
In0.49Ga0.51P 4.07 eV
Alx Ga1−x As 4.07 − 0.64 × 1.247x eV
Alx Ga1−x N 4.1 − 1.87x eV

Energy bandgap Si see Table 2.1
Eg SiO2 8 eV

GaAs see Table 2.1
In0.49Ga0.51P 1.89 eV
Alx Ga1−x As 1.424 + 1.247x eV
Alx Ga1−x N x2 + 1.7x + 3.42 eV

Intrinsic carrier Si see Table 4.1
concentration GaAs see Table 4.1
ni = pi AlGaAs & InGaP compute from (4.19)

Lattice constant Si 0.543 nm
a SiGe see Fig. 8.3

GaAs 0.565 nm
Alx Ga1−x As 0.565 nm for x ≤ 0.4
In0.49Ga0.51P 0.565 nm
Alx Ga1−x N 0.3189 − 0.0077x nm

(cont.)
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Mean unidirectional Si see Table 4.2
thermal velocity GaAs see Table 4.2
vR,e InGaP take to be same as GaAs

Alx Ga1−x As use m∗
e (x) in (4.30)

Mobility Si see (5.30) and Fig. 5.3
µe, µh GaAs see (5.31) and Fig. 5.3

AlGaAs & InGaP take to be same as GaAs

Recombination-Generation lifetime Si see (3.21)
τe,RG, τh,RG GaAs see (3.22)

AlGaAs & InGaP take to be same as GaAs

Recombination parameters Si see Table 3.1
Ae, Ah, B, C, D GaAs see Table 3.1

AlGaAs & InGaP take to be same as GaAs

Relative permittivity Si 11.9
(static value) SiO2 3.9
εr or ε/ε0 GaAs 12.9

Alx Ga1−x As 12.9 − 2.84x
In0.49Ga0.51P 11.8
Alx Ga1−x N 9.5 − 0.5x

Polarization – piezoelectric Al0.3Ga0.7N −0.0113 C/m2

PPz

Polarization – spontaneous Alx Ga1−x N −0.029 − 0.052x C/m2

PSp

Saturation velocity Si see Fig. 5.2 and Table 16.1
(electrons) GaAs see Fig. 5.2 and Table 16.1
vsat GaN see Table 16.1

19.3 Appendix C: N-MOSFET parameters

The parameters listed below are used in many of the examples, figures, and exercises
in this book. They are intended to be representative of Si NFETs at the 90-nm and
65-nm technology nodes. Data for the 45-nm technology node is not widely available,
but perhaps will become so in the near future, in which case you can fill-in the blanks.

Units CMOS90 CMOS65 CMOS45

L nm 90 65 45
tox nm 2.3 1.7
εox ε0 3.9 3.9
NA cm−3 8.3 × 1017 2.6 × 1018

µeff cm2(Vs)−1 230 600
vsat cm s−1 7 × 106 9 × 106

VDD V 1.0 1.0
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abrupt junction, 91
absorption

coefficient, 118
excitonic, 119
free-carrier, 119

air mass number, 117
ambipolarity, 324
associated gain, 307
avalanche breakdown, 281

back surface field, 121
band index, 12
band structure

extended-zone, 9
real semiconductors, 14
reduced-zone, 10

bandgap engineering, 154
bandgap narrowing, 36
base

graded, 260
HBT, 161
SiGe, 260
solar cell, 121
spreading resistance, 266

basis, 3
BiCMOS, 262
Bloch wavenumber, 7
Bloch’s Theorem, 7
blocking contact, 122
body-effect coefficient, 183, 185, 186, 189
Boltzmann Transport Equation, 64–67
boundary condition

1-D FET, 318
current in HBT, 158
effective-mass SWE, 25
infinite well, 203
periodic, 8

Bragg reflection, 11
Bravais lattice, 3
breakdown

avalanche, 281
field strength, 281
Zener, 243

Brillouin zone, 11
	−point, 15
X−point, 15

built-in voltage
1-D FET, 319
Np-junction, 109
np-junction, 93
MESFET, 201
MOScap, 173

capacitance
definition, 210
HBT

base storage, 219
emitter storage, 220
junction, 218, 222

MOSFET
extrinsic, 217
intrinsic, 213
negative, 214

non-reciprocity, 210
quantum, 322
reciprocal, 214
transit

FET, 221
HBT, 220

carbon nanotube FET, 323
channel-length modulation, 236
charge sheet approximation,

179
chemical potential, 52
chemical potential energy, 92
chromaticity

coordinates, 148
diagram, 148

CMOS
BiCMOS, 262
bulk, 240
chip cross-section, 225
inventor of, 225
model parameters, 329
NAND gate, 226
silicon-on-insulator, 240

330
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collisions
mean free path, 78, 80, 311
types of, 49

colour gamut, 148
colour rendering index, 149
colour-matching functions, 147
conduction band, 12
conduction-band edge, 25
conductivity, 74
conductivity modulation, 287
constant-energy surfaces, 21–23
contact

blocking, 122
ohmic, 122, 198

continuity equation
charge density, 66
current density, 66
kinetic energy density, 67

crystal momentum, 9, 11
reduced, 11

crystal structure
basis, 3
diamond, 3
sphalerite, 3
wurtzite, 290
zinc blende, 3

current
ballistic, 63, 80, 311
charging, 212
diffusion, 77
drift, 75
general expression for, 64
leakage

gate-induced, 243
MOSFET, 234

thermal, 79

deep depletion, 278
degenerate

bands, 16
doping density, 55

density of states
1-D, 312
2-D, 206
3-D, 44
local, 316

depletion region
Depletion Approximation,

96
width, 96

heterojunction, 110
under bias, 102

DIBL, 237
dielectric relaxation time, 101
diffusion, 78

ambipolar, 287

velocity, 107
diffusivity

definition, 68
values for, 73

diode ideality factor, 108, 286
direct lattice, 13
distribution function, 43

Fermi-Dirac, 52
Maxwell-Boltzmann, 55

doping, 35
acceptor, 37
donor, 36
halo, 239
in nanostructures, 311
localized, 36
n-type, 37
p-type, 37
pocket implants, 239
retrograde in MOSFETs, 239

drain extensions, 238
DRAM, 277–279

buried word line, 279
evolution of, 278
plate electrode, 277
refreshing of, 278

Drift Diffusion Equation, 67
drift velocity, 71

saturation, 73, 281

effective density of states
1-D, 313
conduction band, 54
valence band, 54

effective mass
band structure, 18
conductivity, 60, 75
crystal momentum, 16, 18
density of states, 45
longitudinal, 22
negative, 19
parabolic band, 21
reduced, 151
transverse, 22

Einstein Relation, 68
elastic constants

compliance, 229
stiffness, 229

electrochemical potential energy, 93
electron affinity, 91
electron wavefunction, 6
electron-hole pair, 33
emitter

HBT, 153
IGBT, 295
solar cell, 121

emitter-coupled logic, 246
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energy balance, 288
energy band, 9
energy band diagram, 25

construction of, 94, 100
energy bandgap, 12

direct, 16
for solar cells, 129
indirect, 16

envelope function, 24, 82
equilibrium

electron concentration, 52
Maxwell-Boltzmann, 54

equivalent circuit
FET

DC, 191
small-signal, 266

HBT
DC, 164
small-signal, 256

HEMT, 304
hybrid-π , 255

eye sensitivity function, 146

Fermi level, 52
chemical potential energy, 92
electrochemical potential energy, 93

Fermi-Dirac integrals, 311
evaluation of, 327
order one-half, 54

FET
depletion mode, 199, 201, 202
enhancement mode, 200

fmax, 264
maximum frequency of oscillation, 269

forward blocking voltage, 293
fT , 257

at high current, 287
world record, 251

GIDL, 243
gradual channel approximation, 177
group velocity, 17

Hamiltonian, 6
HBT

active region, 161
base current

back-injection, 164
recombination, 162

collector current characteristic, 159
common-base gain, 166
common-emitter current gain, 166
current boundary condition, 158
cut-off region, 161
GaAs, 1
high-frequency, 259

high-power, 285
inverse mode, 161
measured fT , 256
normal mode, 161
quasi-neutral base, 156
saturation region, 161

hemi-Fermi-Diracian, 57
hemi-Maxwellian, 57
HEMT, see HJFET

InP, 1
low-noise, 304

heterojunction
band offset, 110
bandgap engineering, 154
lattice-matched, 143
Type I, 109
Type II, 109

HJFET
field plate, 289
GaN, 1
high-power, 289
spacer layer, 206

holes, 19
heavy, 23
light, 23

hybrid-π equivalent circuit, 255
Hydrodynamic Equations, 69

IGBT, 294–296
image charge, 221
impact ionization, 34
injection

high-level, 42
low-level, 42

insulator, 13
internal quantum efficiency, 119

kinetic energy
density, 64
electrons, 25
mean thermal, 68

Kirk effect, 284

Landauer equation, 315
Law of the Junction, 105, 158
LED

active layer, 140
confinement layers, 143
current efficiency, 140
extraction efficiency, 143
heterostructure diode, 140
high-brightness, 2, 139, 140
radiatiative recombination efficiency, 143
voltage efficiency, 139
wall-plug efficiency, 146
white light, 2, 148
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Level 1 model
MESFET, 200
MOSFET, 185

light-emitting transistor, 324
local density of states, 316
luminous efficacy, 146
luminous efficiency, 147
luminous flux, 146

macroscopic, 26
majority carrier, 37
Mason’s unilateral gain, 269
master set of equations, 71

1-D, 318
isothermal, 71
non-isothermal, 71

maximum available gain (MAG), 264
maximum stable gain (MSG), 269
Maxwellian distribution

displaced, 76
mean thermal speed, 58, 313
mean, unidirectional velocity, 60, 313

mean free path, 78, 80, 311
memory

dynamic, see DRAM
flash, 1, 273–276

multi-level cell, 275
single-level cell, 275

non-volatile, 276
metal, 13
metallurgical junction, 98
microscopic, 26
Miller indices, 14
minority carrier

diffusion length, 106
lifetime, 107

radiative, 42
mobility, 51

definition, 68
effective in MOSFET channel,

179
values for, 73

momentum, 3
MOSFET

n-channel, 170
p-channel, 170
body, 170
body factor, 177
body-effect coefficient, 183, 185, 186,

189
channel, 171
channel-length modulation, 182
charge sheet approximation, 179
chip, 1
drain, 169
drain characteristic, 180

flat-band, 174
gate characteristic, 171, 180
gate stack, 233
high-power, 1
inversion, 173

moderate, 177
onset of, 175
strong, 177
weak, 177

long-channel behaviour, 190
model

Level 1, 185
Level 49, 188
square-law, 185
surface potential, 176

multiple gate, 241
ON-current, 172
saturation current, 184
saturation voltage, 184
short-channel effect, 182
source, 169
sub-threshold region, 172
sub-threshold slope, 243
substrate, 170
surface of, 171
surface potential, 171
threshold voltage, 172

P-FET, 225
quantum-mechanical effect, 239
short-channel effect, 237

transfer characteristic, 171

nanotransistors, 2, 310
noise

1/f, 302
corner frequency, 304
correlated, 304
flicker, 302
induced gate, 303
shot, 301
spectral power density, 300
thermal (Johnson), 300

noise factor, 306
noise figure, 306

minimum, 307
non-quasi-static, 252

ohmic contact, 95, 122
ON resistance

IGBT, 295
L-DMOSFET, 292

overdrive voltage, 228

passivated, 125
Pauli’s Exclusion Principle, 12, 51, 52, 55
phase space, 64
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phonons, 30
acoustic, 30
longitudinal modes, 30
optic, 30

polar scattering, 50
tranverse modes, 30

photometry, 146
chromaticity coordinates,

148
chromaticity diagram, 148
colour gamut, 148
colour rendering index, 149
colour-matching functions, 147
eye sensitivity function, 146
luminous efficacy, 146
luminous efficiency, 147

photovoltaic
conversion efficiency, 129
the effect, 116

photovoltaics
building-integrated, 134
sustainability, 2

pinch-off
HJFET, 208
MESFET, 200
MOSFET, 182

pinch-off voltage, 201
pn-junction

abrupt, 91
forward bias, 99
ideal diode, 106

I-V, 107
saturation current, 107

reverse bias, 99
turn-on voltage, 161

potential well
finite, 205
in a LED, 140
infinite, 203

Poynting vector, 118
primitive cell, 4

Wigner-Seitz, 4
punch-through, 295

quantum capacitance, 322
quantum state, 12
quasi-Fermi energy, 76
quasi-Fermi level, 91, 103

splitting, 111
quasi-Fermi potential, 104
quasi-neutrality, 100

region of, 101
transit time and, 211

radiometry, 146
real-space lattice, 13
reciprocal lattice

k-space, 15
numbers, 12
phase space, 13

recombination, 37
Auger, 40, 281
defects, 39
minority carrier lifetime, 42
R-G, 39
radiative, 38
radiative efficiency, 143
SRH, 39
surface velocity, 121
traps, 40

Relaxation Time approximation, 89
resistivity, 74
RESURF effect, 294
reverse feedback

parameter s32, 268
conductance, 254

saturation velocity, 73, 281
scaling, 227
scattering, 50

carrier-carrier, 50
deformation potential, 50
inter-valley, 72
ionized-impurity, 50

screened, 50
piezoelectric scattering, 50
polar optic phonon, 50

Schottky barrier, 195
height, 198
nanoFET, 311

Schrödinger Wave Equation, 6
the effective mass, 24

semiconductor, 13
extrinsic, 36
intrinsic, 32

short-channel effect, 237
charge sharing, 237
DIBL, 237
effective threshold voltage, 238

signal delay time, 259
silicon-on-insulator, 240

dynamic threshold-voltage effect, 241
solar cell

conversion efficiency, 129
dark current, 126

superposition, 126
fill-factor, 128
multicrystalline, 130
open-circuit voltage, 127
photocurrent density, 124
short-circuit current, 128
Si, 2, 129
tandem, 2, 131
thin-film, 2, 131
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source extensions, 238
space-charge region, 93
spin-orbit coupling, 16

band splitting, 16
square-law model, 185
stability

inherently stable, 269
maximum stable gain, 269

strain, 229
stress, 229

liner, 231
stressor, 231

sub-threshold
current, 189, 243
inverse slope, 243

surface recombination velocity,
121

sustainability
LEDs, 149
photovoltaics, 2, 134

temperature
electron, 68
lattice, 68

thermal voltage, 94
threshold voltage

dynamic effect, 241
flash memory, 275
HJFET, 207
MOSFET, 172, 183, 238

transcapacitance, 214

transconductance, 254
transfer characteristic

HBT, 164
MOSFET, 171

transit time, 211
transport

ballistic, 63, 311
dissipative, 63
non-local, 289
stationary, 73
tunneling, 82

tunneling, 82
JWKB Approximation, 85
transmission probability, 84, 318

2-DEG, 202

vacuum level
force-free, 91
local, 93

valence band, 12
velocity overshoot, 73, 288

wave packet, 17
wavefunction, 6
Webster effect, 287
white light, 147

additive colour mixing, 148
wavelength conversion, 148

work function, 173, 195

Zener breakdown, 243
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