
Practical 
Feedback Design 

INTRODUCTION 

Design of the feedback network of a converter is one of the most important aspects of a 
converter’s design, and yet (with the exception of magnetics design) it is also the one most 
often misunderstood. Power supply designers can be classified into two groups: those who 
really understand what compensation (=feedback design) is about and those who don’t. 
The former can compensate a converter within a few hours, and have it perform precisely 
as designed: this chapter will promote you into this group. 

Feedback design is slightly more sophisticated mathematically than other aspects of 
power supply design, but this shouldn’t frighten you off: the math is not used in day-to-day 
work, but is important only to be able to deal with new questions that sometimes arise. So 
to remind you of the necessary background, and unlike the other chapters, this chapter 
discusses some topics that aren’t practical in the sense of being immediately visible in the 
lab; we start with a refresher on complex numbers, and ramp up to transfer functions, 
concepts that are essential to understanding what compensation is about. After this 
beginning, we show the practical part of feedback design in great detail: it really is 
possible to compensate a converter in a couple of hours, and have it perform exactly as 
desired on the first try! 

REFRESHER 

Logarithms and dB 

Decibels are the standard unit for measuring the gain of a transfer function (which we’ll 
define below), such as the open loop or closed loop gain of a converter. We start our 
refreshment with dB, and with logarithms, which are almost the same thing. 
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In engineering, the logarithm base I O  is almost always used, rather than the natural 
logarithm, which is base e. Remember what this means: if something gets 10 times bigger, 
its logarithm is increased by adding 1; multiplication is replaced by addition, and division 
is replaced by subtraction, making the system very convenient. 

Decibels (dB) refer to logarithms that have been multiplied by I O  or 20 to make nice- 
looking numbers (i.e., approximately integers). For our purposes, the multiplying factor is 
always 20. Thus IOV is expressed in dB as 

20 x log( IOV) = 20dBV 

IOOmV is 

20 x lOg(O.1 V) = -20dBV 

Amplitudes less than 1 correspond to dB less than 0. 
Decibels, being logarithms, convert multiplication into addition. So if you have a 

gain of 8 [=20 x log(8) = 18dBI and you want to reduce it to 4, you must multiply it by a 
factor of 0.5, so that in dB this is adding 20 x log(0.5) = -6dB: multiplying corresponds 
to adding. Of course multiplying by 0.5 is the same as dividing by 2, so that in dB this is 
subtracting 20 x log(2) = 6dB: dividing corresponds to subtracting. Either way, either 
multiplying by 0.5 or dividing by 2, the end result is the same, 18dB - 6dB = 12dB = 4, 
as it must be. 

Just as an aside, you sometimes hear people jokingly talk about “bels” which are 
taken to be I O  decibels each; no such unit is ever used in practice. 

Complex Numbers 

Complex numbers are constantly used during feedback design and measurement, although 
the practice is not always obvious. The most transparent case of use is in making a Nyquist 
plot, which is basically a graph of the imaginary part of the loop’s gain versus its real part. 
Nyquist plots are discussed later in connection with Figure 6.34. For now, suffice it to say 
that complex numbers and hnctions are essential. 

A complex number is an object that consists of two numbers, a real part and an 
imaginary part, written as: 

(Re) + i(lm) 

where Re is the real part and Im is the imaginary part. (Engineers call the imaginary unitj  
instead of i to avoid confusion with the symbol for current). For our purposes, we don’t 
care about i being the square root of - 1 ; all we need to know is that there are two numbers, 
Re and Im. 

Since a complex number consists of two numbers, we can draw it on a graph with 
the amount of real on the x axis, and the amount of imaginary on the y axis, as in Figure 
6. I .  Redrawing this picture, we have Figure 6.2, from which it is obvious that a complex 
number can equally well be determined by two other numbers, one the distance from the 
origin (O,O), the second the angle counterclockwise from the positive real axis, which is to 
say a magnitude and a phase. 

The upshot of this is that in electronics, whenever we need to represent something 
with both a magnitude and a phase (and this happens all the time), it is natural to use a 
complex number, which encodes both pieces of information together. 
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Figure 6.1 A complex number consists of 
two numbers, so it can be shown on a graph. 

Figure 6.2 
shown as a distance and an angle. 

A complex number also can be 

Complex Functions 

Since we can use a complex number to represent simultaneously a magnitude and a phase, 
we can have this complex number depend on a parameter (in particular, magnitude and 
phase depend on frequency). For the functions ,of interest to us in stability design, there are 
two interesting aspects of these functions: At what parameter value (read frequency) are 
they equal to zero, and when are they equal to infinity? These two conditions are referred 
to as zeros and poles of the function, respectively. 

EXAMPLE 

x - 2  
x - 3  

Clearly, this hnction i s  zero when x = 2, so it has a zero at the complex number of magnihide 2 and 
phase = 0, (Re) = 2 and (Im) = 0. (Think about Figure 6.1 .) It becomes infinite when x = 3, so it has a 
pole at the complex number of magnitude 3 and phase = 0. 

~ 

As another example, we’ll soon see that a capacitor has a complex number associated 
with it (its impedance) that is a function of frequency, 1 /sC (here s is related to frequency); 
and an inductor has an impedance sL. Figure 6.3 shows the output filter of a switching 
converter (without ESR of the capacitor, or winding resistance of the inductor). 

So, this forms a voltage divider whose attenuation depends on frequency, the output 
is equal to the input times 

1 - 1 / s c  
S L  + I/sC - SZLC + 1 

If it is conceptually easier, think of this as if it were a resistor divider with one resistor 
having a value S L  and the other a value 1 /sC. This hnction has no zeros, but it will have a 
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What's the Difference? 

The difference between the two types of transform is that the Fourier transform considers 
all time; that is, it assumes that you've been measuring the (in this case) voltage forever. A 
Laplace transform considers only voltages that start at time = 0: that is, the voltage was 
turned on at time 0 and was zero before that time. 

Practically, this means that a Fourier transform is used for something like power 
supply noise emission, which can be measured as slowly as you please. A Laplace 
transform is used to describe how a waveform changes with time: for example, what does 
the voltage on this capacitor do when the power supply is turned on? 

In this chapter, we only use Laplace transforms, because we are interested in how a 
power supply responds when something is done to it at time 0, (e.g., a load step is applied 
at that time). Fourier transforms are used implicitly in the chapter on EMI. 

Transform of Cand L 

It is straightforward to determine the Laplace transform corresponding to the impedance of 
a capacitor. Of course, this impedance, and that of an inductor, is used all the time in 
designing filters, and in particular in filters used inside the loop of a converter, as 
mentioned above. We know that 

dV 
dt 

c-=I 

If we let V = est, so that the voltage is a sine wave [this is the same because 
eif'" = cos(ot) + i sin(wt)], we find that 

I = Cse" = c s v  

or that impedance 

as promised before. We didn't have to actually evaluate the integral in the definition of the 
Laplace transform because the integration is implicit in the solution of the differential 
equation-but this is not at all a practical concern. Similarly, we can find the impedance of 
an inductor by knowing that 

dl 
V = L -  

dt 

and substituting e" for V again and integrating, 

or Z = sL. This then justifies the voltage divider example above. 
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Y"(S) 

TRANSFER FUNCTIONS 

VO"t(S) 
H(s) Figure 6.5 The transfer function describes 

what the system does to change the input into 

What Is a Transfer Function and Who Cares? 

A transfer function is a compact method for expressing what a linear system will do at its 
output when you do something at its input. For example, the box in Figure 6.5 might be a 
complete power supply, and so the transfer function represents audio susceptibility: that is, 
how much input noise is attenuated (or amplified!) into the supply upon injection. 

We already know that any function of time can be broken up into its constituent sine 
waves-that's what it means to take its transform. If I apply a sine wave of frequency w to 
this system, the output will also be a sine wave of frequency o, but with a magnitude and 
phase different from the input. The ratio of the output to the input is H(s) ,  the transfer 
function of the system. We use s, where s is complex, because it encodes both the 
amplitude change and the phase shift due to the system. 

We can thus tell the response of the system to any input by breaking up that input 
into its constituent sine waves, applying H(s)  to each of them, and reassembling them at 
the output. 

With power supplies, we are concerned when there is a small disturbance in the loop, 
or an error: instead of growing bigger, the disturbance should die away with time. This is 
what the transfer function can tell us. If the transfer function shows that a loop is unstable, 
as in Figure 6.6, then a disturbance will be amplified, with the result that the circuit 
oscillates. 

Composition Law for Transfer Functions 

When two systems are in series, there is an easy rule for deriving the composition of their 
transfer functions, as shown in Figure 6.7. This rule enables us to figure out the transfer 
function for a closed loop system like that of Figure 6.8, which could represent a power 
supply. The box labeled H(s)  is the power stage, since it transforms the input to the output, 
and the box labeled G(s) is the feedback control, since it takes the output and uses it to 
control how much of the input the power stage sees. We know right away that G(s) applied 
to Out is Out x G(s), and we can then subtract this from In as shown in Figure 6.9. 

But H(s) times this has to equal Out, so we can solve: 

H[In - (Out x G)] = Out 
(H x In) - ( H  x G x Out) = Out 

H x In = Out x [l  + ( H  x G)] 

out H(s) 
In 1 + H(s)G(s) 

T(s)  ZF ~ = 
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l o /  8 

Figure 6.6 Response of an unstable system to a disturbance. 

Equals 

Figure 6.7 Composition law for transfer functions: two in series are multiplied. 

Figure 6.8 A closed loop system 
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Figure 6.9 Calculating the transfer function of a closed loop system. 

This transfer function, T(s ) ,  will prove fundamental in determining the stability of a closed 
loop power supply. As an overview, you can say that if T(s) becomes infinite at any 
frequency-that is, if the transfer function has a pole-the converter is unstable. 

There’s No Such Thing as a (Useful) Transform of a 
Nonlinear System! 

Before we get carried away about how wonderful transforms are, let’s note that they are 
really useful only for linear systems, which in terms of power supplies usually means 
small-signal Cjust what this means will be made more precise later). The typical problem 
with transforms usually occurs when part of the system depends on a parameter 
nonlinearly. Then the operating point of the system changes as the parameter changes, 
and the transform gives information about the system __ only at that one particular operating 
point, telling nothing about the new operating point. 

EXAMPLE 
A converter’s input power source is a solar array. The input voltage changes as the logarithm of the 
current, I = upY. If you do a transform on this system, it tells you only how the power supply 
operates at that one input voltage-NOT what happens at any other operating point! The transfer 
function does not provide useful information in this case. (But you might think about this: Could you 
devise a function that depended both on frequency and on the operating point?) 

The usual solution to getting useful information from a nonlinear system is to time 
average it, so that the nonlinearities are averaged out-this is what state-space averaging 
does for power supplies. (We won’t talk about state-space averaging in this book.) But for 
truly nonlinear systems, such as the solar array example, transform methods cannot be 
usefully used. 

BASIC CONTROL THEORY 

Remember that a closed loop system has the transfer function H/( 1 + HG). In most 
systems, and for power supplies in particular, H is given: it’s the system you’re trying to 
control (in our case, the power stage of a converter). 
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The goal of control theory is to select C, the feedback, so 
that the transfer function is always finite. 

The transfer function can become infinite only if the denominator is zero, which 
happens only if HG = - 1. So the quantity we measure is H(s) ,  and then we select a G(s) 
in such a way that when the magnitude of (HGI = I(= OdB) the phase is not 180" (Le., 
- 1 ). The amount by which it differs from 180" is called the phase margin of the system. 

Bode Plots 

Rather than work directly with the complex numbers that constitute a transfer function, 
engineers find it easier to deal separately with the real and imaginary parts, or magnitude 
and phase. There are several ways of doing this, but the most popular calls for the use of 
Bode plots. (There's been argument over how to pronounce this name, boh-dee or boh- 
day? The first is by far the more common.) 

A Bode plot consists of two graphs: one is the magnitude of the transfer function (in 
dB) versus logarithmic frequency; the other is the phase in degrees versus logarithmic 
frequency. Since for the magnitude plot, both axes are logarithmic, a plot of the transform 
of a single pole (like a capacitor, its impedance is infinite at 0 frequency) or a single zero 
(like an inductor, its impedance is 0 at zero frequency) is a straight line. 

The Bode plot in Figure 6.10 shows the impedance of a 1pF capacitor. You can 
verify that this is the impedance of a IpF cap by observing that the phase is flat at 90", 
corresponding to capacitance; and the magnitude of the capacitance can be verified by 
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Figure 6.10 Impedance of a I pF capacitor. 
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noting that, for example, at 1 OHz, the magnitude is 84dBR = 15.9kQ which gives 1 pF at 
10 Hz ( I  084'20 = 15,900R; 1 /(2n 1 OH2 15,900R) = 1 OP6 F). 

The next Bode plot (Figure 6.1 1) shows a 1kR resistor in series with the capacitor. 
This could represent a capacitor and its ESR, except of course that 1 kR is much larger than 
the real ESRs of most caps. You can see that the magnitude levels off at 60dBR = IOOOR, 
and the phase returns to 180". Thus at low frequencies, the series combination looks like a 
capacitor, and as the frequency increases beyond 1 /(2nRC), the combination looks just 
like the resistor, because the capacitor's impedance goes toward zero. 

10 20 50 100 200 500 1000 2000 5000 10000 
f(W 

Figure 6.11 Impedance of a IkR resistor in series with a IFF capacitor. 

Note: The phase goes to 180" at high frequency, not 0" as you might expect, 
because a 180" rotation on the complex plane corresponds to multiplication by - 1 (start at 
the real number 1 and go counterclockwise half a rotation), and so doesn't affect the "mix" 
of real and imaginary parts. Indeed, many older machines for making Bode plots get 
confused (to anthropomorphize a design problem) about this 180" degree business, so you 
might as well get used to seeing such things. 

Requirement for Stability 

The requirement that the system be stable, stated above for the product H(s) x G(s). 
translates into a requirement on the Bode plot: 

There must be positive phase when the gain = 1 (= OdB) 

To repeat, the amount of phase at OdB gain is called the phase margin. Reworded again, the 
fundamental goal of the design of a feedback loop is to ensure that there is phase margin. 
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Figure 6.12 shows a loop that is unstable: we see that there is OdB at a frequency of 
IOkHz, and that at that frequency the phase is -30"; therefore, the loop oscillates, as 
shown in Figure 6.13. 
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Figure 6.12 A Bode plot of an unstable loop 

Figure 6.13 The response of an unstable loop to a disturbance. 
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In a stable loop (Figure 6.14), we see that there is again OdB at a frequency of 
IOkHz, and that at that frequency the phase is $30”; therefore the loop damps oscillations, 
as shown in Figure 6. 15. (The Bode plot shown is technically “metastable”: see below.) 

How Much Phase Margin Is Enough? 

You sometimes hear arguments over how much phase margin is enough, and you 
frequently see differing requirements from spec to spec: 30” minimum, 45” minimum, 
45” typical, an occasional 60” are all common. 

To understand these disagreements, you need to realize that phase margin serves two 
separate purposes: it relates to the damping of output transients due to a step load on the 
converter; and it guarantees stability regardless of variations of component values (e.g., 
initial tolerance and temperature). 

In the author’s opinion, the first issue is not really relevant, because load steps 
invariably take the supply into the regime of “large-signal stability,” whereas phase margin 
determines only “small-signal stability.” (More on this soon.) Of course, you wouldn’t 
want a supply to have, say, only 5” of phase margin, because it would ring for a very long 
time after a transient. But tiny phase margins like this are unrealistic anyway, because of 
the second purpose of having adequate phase margin. 

Thus, phase margin really has to guarantee only that the loop will remain stable with 
component tolerances, load variations, and temperature variations. For this reason, I 
recommend the following design practice: 
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Figure 6.14 Bode plot of a stable loop. 
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Figure 6.15 The response of a stable loop to a disturbance 

Practical Note Loops should have 45" of phase margin typical at room temperature, 
with nominal values and nominal load. This usually is enough to guarantee stability 
under all variations and tolerances. If the load swing or the input voltage range is 
exceptior .ly large, you might instead consider a specification for a loop having 30" 
minimum at all loads and all input voltages. 

Gain Margin? 

Sometimes you also see gain margin specified. Gain margin is sort of the inverse of phase 
margin; it measures how much gain (actually attenuation) the system has when the phase 
reaches 0". The most important circumstance when this is relevant is in a system with a 
right-half-plane zero, such as a boost converter. (We'll be discussing RHP zeros below.) 
The magnitude part of the Bode plot in this circumstance may have an appearance similar 
to the RC impedance plot of Figure 6.1 I ,  with flat gain at higher frequencies; the phase 
however, continues to decrease. Although you may compensate this system to have 
adequate phase margin, changing the load may change the crossover frequency a great deal 
because of the flatness in the gain, resulting in a OdB frequency at which there is no phase 
margin left. By specifying minimum gain margin (typically 12dB), you can avoid this 
situation. The author recommends that gain margin be specified only if a flyback converter 
is being designed; in other converters, naming a gain margin serves no practical purpose. 



134 Chap. 6 W Practical Feedback Design 

About Conditional Stability 

Normally, in a closed loop system, both phase and gain decrease with increasing frequency 
(ignoring for now intentionally introduced phase boost, such as in the feedback systems we 
will be designing later in the chapter). Thus in a normal system, when gain is reduced. 
phase margin typically increases. But in a conditionally stable system (also called 
“metastable”), phase goes up again before going down (see Figure 6.16). So if gain 
were reduced for some reason, the phase might go below 0” while there is still some gain, 
proceeding to oscillate at this frequency, even though it is “stable” and “has adequate 
phase margin.” Conditionally stable systems should thus be avoided when possible. 

As an exercise, you might think about how you could word a specification to avoid 
this sort of problem. 
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Figure 6.16 A stable loop exhibiting metastability. 

Small- versus Large-Signal Stability 

Bode plots relate to the response of a system to a small (ideally, infinitesimal) disturbance. 
But if a disturbance is large, the system response probably will not be determined not by 
the linear aspects of the feedback but by nonlinear aspects, such as op amp slew rate or rail 
voltages, or maximum and minimum achievable duty cycles, etc. When factors such as 
these enter into a system’s response, the system is exhibiting a nonlinearity, and so the 
transform method doesn’t apply. Thus, while small-signal stability is necessary, it is not 
sufficient to guarantee stable operation. 
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Practical Note If possible, a loop should be designed to avoid large-signal operation. 

In any case, large-signal bandwidth of a converter is always less than or equal to 
small-signal bandwidth, because before the converter's loop can run into some nonlinear- 
ity, it first has to respond, and the response is set by the small-signal bandwidth. One way 
around this, which has been tried on occasion, is to have a completely separate nonlinear 
loop for large-signal response: but then, it must be decided when each loop should be 
active, how interference can be avoided between them, and so on. 

EXAMPLE 

A true story A I .2V power supply was designed to have very wide bandwidth, and measurement of 
its closed loop response showed 45" of phase margin. Unfortunately, when a load step was applied, 
the system began to oscillate: the op amp, which had insufficient gain bandwidth and slew rate, spent 
all its time trying to catch up with itself, first hitting its positive rail, then swinging down to ground, 
then back up again. This oscillation was eliminated by swapping the op amp for a pin-compatible one 
with higher gain bandwidth (and higher slew rate). 

HOW TO STABILIZE A VOLTAGE MODE BUCK CONVERTER 

With all these preliminaries out of the way, we can turn to the task of the practical design of 
a feedback compensation. We start by demonstrating the method for measuring and 
stabilizing a very simple converter, a voltage mode buck. The same methods demonstrated 
here are directly applicable to stabilizing other types of converter as well. 

Initially, we have just the power stage (Figure 6.17). We have a power MOSFET 
controlled by a PWM switching at 250kHz; there is a freewheeling diode and an inductor 
and an output cap; and the PWM has an error amplifier but is otherwise just a block for the 
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Figure 6.17 Power stage of the buck converter to be stabilized. 
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moment. The inductor is 44pH (at OA-it's in fact just the DC inductor we designed in 
Chapter 5, the one that swings down to 35pH at 2A). The output capacitor is 220pF. The 
author has taught lab sessions on loop compensation with exactly this setup, so if you like, 
you can assemble the components as you go along and duplicate the measurements shown 
in the book. 

Our overall strategy is going to be this. First we will measure the open loop response 
of the system, which can be done without using the error amp. From the data we collect, 
will be able to design a compensation that ensures stability. Finally, we measure the closed 
loop response, to verify that we did it right. It sounds easy, and it actually is; once you've 
done it a couple of times, the entire process of stabilizing a converter can be done in a 
morning-honest. No more two weeks wasted swapping components in and out. 
Stabilization can be successhl on the first try! 

How to Measure Open Loop Response 

The open loop response of the converter is by definition the response of the power stage- 
that is, what does the output look like when you jiggle the duty cycle? To measure this 
open loop response, you need to have the converter operating more or less at its correct 
operational parameters: since the output is supposed to be 5V when the converter is 
working, you don't want to measure the open loop response when the output is 3Vor 13V! 

So the plan of action is going to be to find the DC operating point, and then add a 
small AC on top of it, as illustrated in Figure 6.18. 

The error amplifier of the PWM is made unity gain; don't forget and leave anything 
attached to it, or you'll get crazy-looking results! 

To make this measurement, add together (using a mixer, described below) an 
adjustable DC voltage and a swept sine wave from a network analyzer. Starting the 
adjustable DC voltage at zero, increase it very slowly until you get approximately 5V at the 

1 Adjustable Q'-2mv - - 

Figure 6.18 An open loop measurement will be taken by setting the DC operating point 
and adding an AC component. 
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output of the converter. Make sure that a resistive load (maximum specified load is 
preferable) is already attached to the output before you bring the adjustable DC voltage up 
from OV This is important because changing the load in this open loop mode can cause the 
output voltage to fluctuate wildly, potentially blowing up your output cap. 

Practical Note Some PWMs have an offset voltage, so the duty cycle remains at 
zero until you reach a volt or so. 

Practical Note Power stages with high gain will clearly be very sensitive to the 
adjustable DC voltage. With an ordinary lab supply, it may be frustratingly difficult to 
adjust the control voltage to get exactly the output voltage you want. In this case, you 
can probably settle for anything within 5% of the actual output. An alternative is to buy 
or build a precision voltage source that can be adjusted in millivolt steps. Better yet, 
see below for a method that avoids this measurment altogether. 

Once you have the adjustable DC voltage set so that the output voltage is correct, 
measure the open loop transfer function by dividing ACout/ACin, at the points shown in the 
schematic (Figure 6.18), with the network analyzer which is generating the swept sine. 
(See Chapter 4, on instrumentation, for detailed operational information on how to run a 
network analyzer.) 

Let's take a careful look at the actual measurement of the open loop response of the 
converter (Figure 6.19). At very low frequencies (below lOHz nothing is happening in this 
circuit), the gain is 1 1.8dB, and the phase is 0". Zero phase is to be expected at very low 
frequencies, since when you increase the duty cycle on a buck, the output voltage increases 
(transfer function = Out/In). 

As for the low frequency gain, consider a hypothetical increase in the DC control 
voltage of, say, 100mV The oscillator ramp for the PWM used (a UC2825) is 1.8Vpp, so 
the 1 OOmV causes a change in duty cycle of 1 OOmV/ I .8V = 5.6%. (Note that the ramp 
amplitude directly affects converter gain.) Now the PWM actually has two outputs, of 
which only one is being used. So increasing the duty cycle increases only the one output- 
the other is zero (as seen by the MOSFET) no matter what: that is, the MOSFET has a 
maximum duty cycle of 50%. So the real increase in duty cycle is only 2.8%. Now when 
the duty cycle increases, the effect is to increase the average voltage applied to the 
inductor, because the MOSFET is on longer; that is, the 15V input is applied longer. The 
output voltage thus increases by 15V x 2.8% = 420mV Since this was caused by a control 
voltage increase of 100mV, the gain at low frequency is 420mV/100mV=4.2 = 12.4dB, 
which is quite close to what we actually measure. (The 0.6dB error = 7%, and is probably 
caused by finite rise and fall times of the MOSFET switching; it is unimportant for our 
loop measurements and can be eliminated by methods discussed hrther on.) 

Looking again at the actual measurement, we see that as the frequency increases, the 
gain rises and the phase falls, which is caused by the LC tank resonance. As confirmation 
we may check that the resonant frequency should be 

in close agreement with the measurement. 
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Figure 6.19 Buck converter open loop measurement. 

Finally, at high frequencies, the gain rolls off at 12dB per octave (i.e., the gain at 
4kHz is one-quarter the gain at 2kHz; an octave is a factor of 2 in frequency), 
corresponding to the two poles, the inductor and the capacitor. The phase at the topmost 
frequency in the measurement is starting to rise again, as a result of the ESR of the output 
capacitor. The measured ESR of the cap was 120mR, so the RC frequency is 

1 
2nRC 

f = - = 6kHz 

(The phase doesn't go all the way to - 180" because of this zero.) If the gain measurement 
had been continued to even higher frequencies, you would have seen the gain decreasing at 
only 6dB/octave, which is a single pole, because the capacitor had become resistive at 
these frequencies owing to its ESR, just as in the example earlier in the chapter of a series 
R and C. 

Venable's K-Factor Paper 

Now that we've measured the open loop, we can design a compensation network to make 
the converter stable in closed loop. We're going to choose a bandwidth of 500Hz, which is 
well below the resonant fiequency of the output tank, because we are in voltage control 
mode. Although it is possible to compensate the loop so that it is stable with a bandwidth 
above the resonance, it is a better idea to go to current mode control for this. (Alternatively, 
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Cl 
I I  41 

- - 

it is possible to stabilize a voltage mode converter well above the RC frequency, because 
the phase is back to only -90"; we won't be demonstrating that here.) 

The method described here, first demonstrated by Venable [ I ] ,  amounts to computa- 
tion of the amount of phase the error amplifier needs to give the desired phase margin 
("phase boost"), followed by selection of one of three types of compensation based on this 
calculation. The actual component values are then computed based on the idea of placing 
zeros and poles symmetrically around the desired bandwidth frequency: zeros to cause the 
phase to rise below the bandwidth, poles to cause the gain to decrease above the 
bandwidth. The three amplifier types are shown in Figures 6.20, 6.21, and 6.22. 

Figure 6.20 Type I amplifier. 

Now the cursor of the network analyzer in our open loop measurement of the buck 
converter was set at our intended bandwidth of 500Hz (a convenient practice if you need to 
make presentations), so that we know the open loop gain there is 12dB, and the phase is 
-7". 

We've already done the first two steps of the K method, namely, making the 
measurement and choosing the cross over frequency (another name for the bandwidth.) 
The third step is to choose a phase margin; based on our earlier discussions, we will choose 
45". 



140 Chap. 6 Practical Feedback Design 

Figure 6.22 Type 111 amplifier. 

The fourth step is to compute the gain necessary for the error amp. Since the open 
loop gain is 12dB, we have to reduce the gain by 12dB to get OdB at 500Hz. So the error 
amplifier gain should be G = - 12dB = 0.25 at 500Hz. Be careful in this step, don't leave 
the gain in decibels! 

As a fifth preparatory step, we compute how much phase boost we need from the 
compensation: 

boost 1 M - P - 90 

where M is the desired phase margin and P is the measured open loop phase shift. For the 
case we are considering, we have boost = 45 - (-7) - 90 = -38"; since this is less than 
On, no phase boost is required, and we can use a type I amplifier (see the discussion below). 

One final preliminary step is to select R , .  Since this is a 5V output, and the UC2825 
PWM IC has a 5V reference, no &as is required, and a good starting value for R ,  is IOkfi. 
If the output voltage had been higher (or the reference voltage lower) an would have 
been used to divide down the output voltage. However, !?bias has no effect on the gain or 
phase of the error amplifier; as long as you leave R,  alone, the output voltage can be 
adjusted by adjusting without affecting the error amp! (Note, however, that adjusting 
V,,, does affect the open loop, and thus potentially loop stability. This is why the open loop 
measurement is done close to the actual operating point.) 

Now, the compensation for our buck converter only requires C ,  to be computed. For 
the type I this is done as follows 

1 
2nfGRi 

c, =- 

[Type I Amplifier] 

For us, C, = 1/(2n x 500Hz x 0.25 x 1OkQ) = 127nF. Rather than trying to parallel 
capacitors, simply round this down to the nearest common value, 120nF-remember 
that the purpose of phase margin was to make it unnecessary to wony about component 
tolerances! In the lab, the value we actually measured on our 120nF capacitor was 135nF. 
(This was a CKR06 style cap, with a tolerance of 20%. Generally, it is better to use 10% 
NPO or COG style capacitors in the feedback loop.) 
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Before getting back to our buck converter to verify performance, let's consider the 
other types of error amp. As long as the necessary boost computed is less than 0", as in our 
buck converter, a type I amplifier is all that's required. However, if more than zero degrees 
of boost is required, one of the other error amps must be used. The type I1 amplifier 
theoretically can provide up to 90" of phase boost; practically, trying to get more than 
about 75" out of it results in component values that are either too large or too small to be 
practical. Above 75", and less than about 160", a type 111 can be used. If you need more 
than 160", chances are you're measuring wrong! 

Practical Note Limit the boost of a type I 1  amplifier to 75", and a type I l l  to 160". 

For reference, the design equations for the other two types of amplifier are: 

K = tan(? boost + 45) 

1 c -  
- 2n.f GKR,  

Cl = C2(K2 - 1 )  

[Type II Amplifier] 

I 
27t f GR, 

c2 = ~ 

C ,  = C2(K - 1) 

I c -  
- 2 7 t f a  R,  

[Type 111 Amplifier] 

Remember to use degrees in these equations, not radians! 
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Practical Considerations 

Much of the time you will end up using a type I1 compensation. There should be 
something unusual about the power stage if you determine you need a type III&otherwise, 
either your measurement or your calculation may be wrong! A little bit of caution here will 
save quite a bit of aggravation later. 

In any case, as stated above, you should never need more than 160" of phase boost. 
If > 160" seems to be necessary, something's wrong for sure. 

What happens if the values you calculate turn out to be very large (say, 10MR) or 
very small (say 7pF)? 

Practlcal Note Avoid using resistors larger than lMR, or capacitors smaller than 
22pF. Strays will make them too inaccurate for loop compensation. If your calcula- 
tions show a need for parts that are outside these bounds, a good plan will be to start 
over, using a different value for R, ,  such as l k n  instead of 10kR. 

Finally, what do you do when you calculate an oddball value, such as 900pF? Do you 
need to parallel caps? 

Practical Note As long as you're not at the top end of the possible phase boost from 
the type of error amp compensation you're using, just round off the capacitor values to 
their nearest standard values; the compensation will still be good enough. For the 
question just asked, 1 nF will be good enough instead of 9OOpF if you're trying to get 
60" phase boost. If you're right at 80" phase boost with a type II, try going to a type 111. 

Other Comments 

The comments above suggest that there is a practical limit on the maximum bandwidth you 
should try to give a converter. Of course, a voltage mode converter shouldn't be stabilized 
above its resonant tank frequency unless you are going to stabilize it above its output 
cap-ESR zero frequency; and of course no normal switch mode converter can be 
compensated to have a bandwidth close to its switching frequency. Beyond these limits, 
however, even current mode converters have limits, set by the compensation values that 
can be reliably attained. To get bandwidths of IOOlcHz or more not only will require very 
high switching frequencies, but probably, in addition, some sort of integrated or hybridized 
circuit, to control stray impedances. The typical practice is to give substantially more phase 
margin than is used with lower bandwidth converters, because the strays give increased 
variability to the values used. 

One final comment on Venable's method. Symmetrical distribution of poles and 
zeros is enough to uniquely determine a type I1 (and, a fxtiori, a type I) amplifier, but it 
doesn't uniquely determine the compensation values for a type 111. There may be ways to 
adjust the position of the poles and zeros of a type 111 m o r  amp for special purposes. 
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How to Measure Closed Loop Response 

So now the buck converter circuit looks like Figure 6.23. In addition to adding the 
compensation on the schematic, a summer has been added (the circle with the C in it) 
showing injection of the swept sine wave, and the correct points to measure the closed loop 
response of the converter, ACou,/ACi,. Observe that the loop remains closed during this 
measurement, so that it automatically controls the output voltage to the 5V level; no 
external DC control is required. 

4"t =5v 
L I I  + 220PF 

+ 

AC0,t 

- - 

PWM 
Fs =250kHZ 

Figure 6.23 Loop with compensation added. Also shown is diagram for measuring 
closed loop response of converter. 

For the astute reader, let's mention that what is being measured here is not the power 
supply transfer function, Vout/Vfn. We're instead measuring a related quantity inside the 
loop. Relabeling our block diagram, we come up with Figure 6.24. 

We are measuring the point labeled GH(1n - V') divided by the point labeled V'. 
Now the thing to notice is that the network analyzer measures only AC signals, using a 
bandpass filter centered at each frequency in its sweep. So the term (GH x In) is filtered 
out before the division, because it is a constant, (i.e., DC). So the result fiom the analyzer 
is -GHV'/V' = -GH. So the design criterion that GH # - 1 can be replaced by the 
criterion that what the network analyzer measures must not equal 1; that is, we have to 
avoid having gain = OdB and phase = 0" at the same time. 

/-/(In-V') 
b H(s) 

In- V' 
b In 

I V'  

Figure 6.24 The closed loop measurement is really measuring GH. 
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How to Measure It : Transformer Method 

Up to now the summing hnction used in measuring the loop has been shown as just that, a 
big C. In this section and the next, this omission will be remedied, showing the two 
popular methods for implementing this function, and pointing out practical aspects of their 
use. We start with the transformer method. 

The transformer method (Figure 6.25) works just as you might suppose, by 
transforming the AC drive signal over into the loop. The 5 0 0  in parallel with the 
secondary is not strictly necessary, but accomplishes the following convenient hnction: 
the transformer can be soldered on top of the resistor, allowing you to measure the loop 
without having to desolder anything on the PC board. The 50R is small compared to the 
10162, and so does not affect the output voltage all that much. 

I Fs=250kHz PWM I 
1 OOmV 

Figure 6.25 The transformer method of measuring the closed loop response of the 
converter. 

The transformer method enjoys some'popularity, and this ability to tack it in is its 
best feature. Of course, it also provides isolation between the network analyzer and the 
circuit, which can be important if you are measuring a high voltage output. 

On the other hand, the transformer has to be carefully designed to be responsive over 
a very broad range of frequencies, both very low (where it mustn't saturate) and very high 
(where it mustn't have so much capacitance that the signal will be shorted out). 

How to Measure It: The Mixer Method 

A second method, and the one the author recommends, is using a mixer, which is just an 
op amp adder (see Figure 6.26). 

The mixer (unlike the transformer) works at arbitrarily low frequencies, and with 
proper op amp selection can work at very high fiequencies. 
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I I 

I 
I I PWM 

I FS =250kHZ I 
Figure 6.26 The mixer method of measuring closed loop converter response 

Practical Note Be careful! Before you use the mixer, measure its response, 
particularly its phase, with the network analyzer. Some high gain bandwidth op 
amps have lots of phase shift, and some don't; usually you can't tell from the data 
sheet. Don't forget 100nF bypass caps for the op amp's power lines. And for really 
high frequency measurements, you might want to make everything surface mount 
and use BNC connectors for inputs and output. 

The major drawbacks of the mixer are as follows: ( I )  you have to desolder a 
component on the PCB to insert the mixer in the loop, and (2) you can't run it in a loop 
whose output is greater than the op amp's supply voltages. On the other hand, the only real 
requirement for the placement of the mixer is that it have low impedance inputs, and output 
to a high impedance node. So anywhere that is low impedance could go into the mixer- 
maybe even in the divider network, which will have to be present anyway for a high 
voltage output. 

Converter Closed Loop 

We used the mixer method to measure the response of the actual buck converter circuit in 
the lab (see Figure 6.27). Since we had targeted 500Hz as the crossover frequency, we 
expect to have OdB at 500Hz, and a phase margin of 90 - 7 = 83". What we actually 
measure is - 1.8dB and 83" exactly. The 1.8dB error (= 23%) is explained in part by the 
7% error in the capacitor value ( I  35nF instead of 127nF), the remainder is due to a slight 
error in the output voltage when the open loop was measured. Below, we show how to 
avoid even this small error. 

Let's examine the plotted measurement carefully. At low frequencies, the gain is 
higher as the frequency decreases, due to the pole at the origin (i.e., the capacitor in the 
feedback). At a very low frequency (not shown in this measurement), there is a maximum 
gain, set by the open loop gain of the error amp. The pole at the origin is desirable, and is 
standard in closed loop converters because it means that the DC output voltage will have 
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Figure 6.27 Closed loop response of the buck converter measured with the mixer 

method. 

only a tiny error (with respect to the reference voltage); all three error amp configurations 
have a pole at the origin. For example, the gain of the error amp at very low frequencies 
might max out at 80dB. Since 80dB = 10,000, this forces the output voltage to match the 
reference voltage to I part in 10,000, 0.01%. This is of course much better than the 
accuracy of almost all references, and consequently the error in the output voltage is 
entirely due to the error in the reference. 

At frequencies above the resonant tank frequency, the phase drops rapidly, but there 
is about 12dB of gain margin. Altogether, then, calculated performance and measurement 
match well. 

Practical Note When doing your closed loop measurement, always make sure to hit 
all four corners: maximum and minimum input line voltage, and maximum and 
minimum output load. The open loop changes with these parameters, and thus so 
does the closed loop response; you need to be stable for all four conditions. 

How NOT to Measure a Loop 

Naturally, there are any number of ways of doing something wrong. Over the years, the 
author has encountered at least four incorrect approaches to measuring a loop. Here they 
are, with the reasons for inadequacy briefly noted. 
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L 3 r l  

1 .  Don’t measure the “In” signal at the AC source rather than at the output of the 
mixer. This fails to take into account the feedback loop. It’s more like measuring 
H(s)[G(s) - I ]  rather than H(s)G(s). 

2. Don’t try to inject the AC at the reference pin instead of inside the loop. (Where 
would you measure the loop response then?) 

3. Don’t put the “In” and the “Out” probes at the same place (because the 
transformer’s just a piece of wire, right?). 

4. Don’t try to stick the output of the network analyzer right into the loop directly, 
without an amplifier or transformer. Although this can be fine for a 5V input 
converter, generally it can be a good way to blow up the equipment. 

-_ 

A Better Method of Measuring the Open Loop 

As we’ve seen in our buck converter, there can be some difficulty in measuring the open loop, 
both in thc required equipment, as well as in achieving a desirable accuracy. And when the 
noninverting pin of the error amplifier isn’t available (as in 8-pin PWM ICs). measuring the 
open loop can be rather problematic, since there’s no straightforward way of making the error 
amp unity gain. Fortunately, there is a better way, devised by the author some years back. I 
now use this method to exclusion of all others because of its substantial superiority. 

At low frequency, a power stage is always a fixed gain with O >  phase shift: you put in 
some duty cycle and get some voltage out, and increasing the duty cycle increases the 
output voltage. This implies that a converter can always be stabilized by picking a low 
enough bandwidth, and in particular, by using a type I amplifier. Following this thought, 
the preferred method for determining the open loop response is to use a large capacitor for 
compensation in a closed loop configuration, measure the closed loop, and then subtract 
the effect of the large capacitor. The compensation to be used in the actual circuit can then 
be derived as usual. 

To illustrate the method, we perform a closed loop measurement on our buck 
converter with a 1 pF capacitor as compensation, to determine the open loop characteristics 
(see Figure 6.28). 

Figure 6.28 The best method of measuring the open loop characteristics of the converter 
is to compensate it at a low frequency. 
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Figure 6.29 Loop characteristics measured with an initial low frequency compensation 

The measured response is shown in Figure 6.29. The bandwidth appears to be about 
5OHz-but. this is not what we're interested in. Closing the loop was just a stratagem for 
obtaining the open loop characteristics. At 500Hz, where we want to close the loop, the 
gain is measured to be - 19.4dB, with a phase margin of 83". This means we should select 
a capacitor smaller than the lpF by -19.4dB =0.107, which is to say 107nF, which 
will still give us 83" of phase margin, since it is still a type I amplifier. Using the 107nF 
instead of the 135nF actually selected would increase the measured gain by 
135/ 107 = 1.26 = 2.0dB, which would bring the measured gain (- 1.8dB) into agreement 
with calculation to within 0 . 2 d B d e a d  on. Thus, this method can be expected to give 
almost perfect results, as seen here. 

Practical Note Sometimes the gain of the power stage is low, and if you are trying to 
compensate the loop to a high frequency, the gain measured by this method at that 
frequency may be low enough to be in the noise (e.g., -60dB). In such a case, you 
should probably try decreasing the lpF cap to 100nF, thus increasing the gain by 
20dB. 

If the phase margin we measured using this method had been too low, say only 20", 
we would have selected a type I1 compensation, with a phase boost of 25" (because 
20" + 25" = 45") at 500Hz and a gain of - 19.4dB at 500Hz, thus bringing us back to 45" 
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at a crossover frequency of 500Hz. Compensation with this method is thus almost trivially 
easy; you can astound your boss with how quickly you can stabilize a converter. 

What If the Noninverting Pin of the Error Amp Isn’t 
Available? 

It’s not uncommon to use an 8-pin PWM IC for a supply, in which case it is typical for the 
noninverting pin of the error amplifier to not be pinned out, but rather to be referenced 
internally to a reference voltage. As mentioned above, in this case it is quite hard to figure 
out how to measure the open loop gain directly, since there’s no convenient way of making 
the error amp unity gain. If, however, you use the closed loop method described, such 
measurements are straightforward and the inability to access the noninverting pin is no 
drawback. Figure 6.30 shows the measurement setup for determining the open loop 
characteristics of a converter using such a PWM. 

vtn=15v - 

I PWM I 

vout =5v 

--IACCut 
3- 1 OOmV 

I F~=250kHz I 
Figure 6.30 Using the low frequency compensation method to measure the open loop of 

a converter in which the noninverting pin of the error amplifier isn’t 
accessible. 

CURRENT MODE CONTROL 

Theory 

The difference between current mode control and voltage mode control is that current 
mode control has two feedback loops, one to control the inductor current, the other to 
control the capacitor (output) voltage. 

The control theory for this system can be worked out the same as for the voltage 
mode control system, though we’re not going to. Let’s note, however, that there are some 
subtleties involved with the high frequency response of current mode control converters 
that have been worked out only in recent years (notably by Ray Ridley). 

For practical purposes, the reason for having the second, inner loop (see Figure 6.3 1 )  
is that controlling the inductor current acts to remove the effect of the inductor on the 
power stage’s transfer function. This is because the transfer function of the power stage 
already includes the closed loop of the current loop, so that the effect of the inductor is 
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out 

Figure 6.31 Control block diagram of a current mode converter. 

entirely absorbed by the loop controlling it and doesn't appear in the response. Thus, there 
is no resonant tank to worry about, and at high frequencies there is only a single pole (the 
output cap), so that the phase shift goes to -90" rather than - 180". These effects make it 
much easier to control current mode than voltage mode, and make it possible to give 
current mode controlled converters high bandwidth. 

A Limitation of Current Mode Control 

The usual implementation of current mode control is to sense a current with a resistor (or a 
current transformer going to a resistor, which is the same thing) and feed it into a PWM IC. 
However, as load current decreases, the magnitude of this signal must also naturally 
decrease. If the load is light enough, the current signal will be negligible, and the current 
feedback loop has no effect on the system; thus, 

Current mode control becomes voltage mode control at light loads. 

So if you give the converter a lot of bandwidth at maximum load, you need to 
carefilly check that at minimum load the extra pole (the inductor) isn't cutting back in and 
causing instability. Counteracting this effect, though, is the fact that converters typically 
have less open loop gain in the power stage at light loads than at heavy loads. 

Practical Note From a practical standpoint, you won't have current mode control 
over the whole range of operation if your load range is more than 10 : 1. 

Slope Compensation 

When the duty cycle of a current-mode-controlled converter exceeds 50%, the converter 
will oscillate at a subharmonic of the switching frequency, actually half of the switching 
frequency, unless slope compensation is added. The origin of the problem can be 
understood thus. A current mode control loop works by turning off the switch when the 
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current reaches a certain level (set by the error amp output). If the duty cycle exceeds 50%, 
the inductor current is being ramped up for more than 50% of the period. This means, 
obviously, that the inductor current is being ramped down for less than 50% of the period. 
This smaller time means that the inductor current has not yet returned to its steady-state 
initial value by the time the next period is getting started, so the current for the next period 
starts off too high. During this next period, therefore, the inductor current reaches the turn 
off level too soon, causing the duty cycle to be terminated early; in fact, it’s terminated at 
less than 50% of the duty cycle. But now the off-time is too long (> 50%) and so the current 
at the start of the next cycle is too low, causing the duty cycle to again exceed 50%, and so 
on, oscillating between under- and overshooting the current every other cycle. There is a 
clear demonstration of this subharmonic oscillation happening in the literature [2]. 

Slope compensation fixes this problem basically by adding a fixed ramp to the 
current signal. Since this ramp has a constant value, the effects of variations in the current 
signal are better damped. In fact, the 9 effect of slope compensation is to make the 
control loop somewhat more like a voltage mode control. This makes sense: if you think 
about it, a voltage mode controller works with a fixed ramp against which it compares the 
error amplifier’s output. So adding more and more slope compensation brings the converter 
back closer and closer to voltage mode; if the ratio of slope compensation amplitude to 
current-signal amplitude went to infinity, you’d be back entirely at voltage mode. This 
explains the statement above that at low load power, your current mode control converter is 
back to voltage mode. 

It is also to be observed that adding slope compensation puts the converter 
somewhere between voltage mode (with two poles) and current mode (with one pole); 
this means that when you take a loop measurement, and measure the slope of the Bode 
plot, you find that it is intermediate in value between one and two poles. Of course, it is the 
active circuitry that makes such a nonlinear transfer function possible. 

As an aside, people sometimes tell me there’s no such thing as a “subharmonic 
oscillation.” I’m not sure what their reasoning is, but one need only try building a current 
mode power supply with duty cycle exceeding 50% and no slope compensation to see that 
there certainly is a subharmonic oscillation; the converter oscillates at exactly half of the 
switching frequency. 

Adding slope Compensation to a current-mode-controlled converter (see Figure 6.32) 
is as simple as adding in some amount of a fixed ramp to the current-sensing feedback. 
Without going into the technical details, it turns out that adding various amounts of fixed 
ramp accomplishes either perfect current mode control or perfect audio rejection of the 

Figure 6.32 Adding slope compensation to a 
current mode control converter. 
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supply. But the reality is that tolerances in components and variations of the load make it 
impossible to attain either of these states. 

Practical Note If the duty cycle of a current-mode-controlled converter is going to 
exceed 50%, the converter needs to have slope compensation. The practical way to 
determine the right amount of slope compensation is to run the converter at maximum 
load current and add enough slope compensation to stabilize the converter against 
subharmonic oscillations. At lower loads the converter will then automatically be 
stable. 

How to Compensate a Current Mode Controller 

With one notable exception (discussed below), a current mode converter can be 
compensated in the same way as a voltage mode converter. Arrange the current-sense 
resistor to produce about the maximum signal the IC will take (typically, 1V) when the 
converter is at full load, and then forget about it. If you’re going to have a duty cycle 
greater than 50%, remember to add in some slope compensation. Now you measure the 
open (voltage) loop exactly as you did for a voltage mode controller (10162 and lpF), 
design the compensation, and you’re through! Don’t forget to check the four comers! 

Can I Measure the Current Loop? 

The foregoing methods have proven so successful and easy at measuring the voltage loop, 
that I’m sometimes asked about the possibility of measuring the current loop as well. 

As a first part of an answer, let’s comment on the desirability of making such a 
measurement. In a general sort of way, the current loop is always stable, with (it turns out) 
lots of phase margin, at least as long as you remember to add the slope Compensation when 
necessary. So with the notable exception of average current mode control (discussed 
below), there isn’t any need to measure the current loop: you just use it and forget it. 

Making the measurement turns out to be quite difficult, and in fact can’t be done 
with a normal network analyzer. You’ll recall that a PWM works by having a comparator 
that changes logic levels when the ramp signal (here, the current signal plus any slope 
compensation) is equal to the error amplifier output signal. The theoretical aspect of this 
digital operation is that instead of using Laplace transforms, the system needs to be 
described with a z transform, or else at least via an analog approximation to the dynamics 
of the comparator (worked out in recent years by Ridley) involving two RHP zeros. 

Practically, because of this digital portion, ordinary swept sine wave analyzers can’t 
be used. Instead, some sophisticated digital modulators have been devised. In any case, this 
sort of thing is done only in universities, never by practicing engineers. As stated above, 
the current loop is basically always stable in normal converters. 

Average Current Mode Control 

As noted in several places throughout this book, average current mode control, which is 
mainly used in off-line power factor correction converters, constitutes an exception to the 
general rules about current mode control. 
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The idea of average current mode control is that instead of using a comparator to 
compare the current signal with the output of the error amplifier, a second amplifier is used 
to provide some gain for the difference between the current signal and the output of the 
error amp. Thus, while the standard current mode control current loop has a bandwidth 
equal to the switching frequency of the converter, the average current mode control current 
loop can have a reduced bandwidth. In the author’s original invention of average current 
mode control, the current error amplifier could be arbitrarily compensated to achieve any 
desired bandwidth and phase margin (using the same techniques used in compensating the 
voltage error amplifier). In the systems in common use today, the current loop is heavily 
filtered down to around line frequency. With a loop such as this, it is straightforward to 
measure the bandwidth and phase margin by means of the closed loop techniques 
described above. 

A general requirement for stability is that the outer (voltage) loop have a smaller 
bandwidth than the inner (current) loop. Of course, this is a no-brainer for the usual current 
mode control, in as much as the current loop then has a bandwidth equal to the switching 
frequency. 

NON-MINIMUM-PHASE SYSTEMS 

Once in a while, you’ll get a Bode plot that just doesn’t make any sense, even though 
you’re sure you’ve measured it correctly. For example, it will show the phase as being 
- 180” at low frequencies, crossing through zero degrees up to some maximum, and then 
coming back down again. This response is symptomatic of a non-minimum-phase system, 
for which a Bode plot is not sufficient to be able to determine stability. 

A non-minimum-phase system is any system that has a right-half-plane zero in its 
open loop transfer function. What this means can be most easily understood by thinking 
about how a flyback converter works. 

Figure 6.33 A flyback converter responds to a drop in voltage by turning on longer, 
causing the voltage to fall even further. This is what is meant by a right-half- 
plane zero. 
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Consider what happens when the load current increases (the load resistor value 
decreases) in the flyback converter shown in Figure 6.33. The output voltage begins 
instantaneously to drop. To supply more power, the feedback increases the duty cycle of 
the transistor, in order to store more energy in the primary inductance. Instantaneously. 
though, the transistor sees that it is tumed on longer. This means that it doesn’t deliver 
energy ‘‘on time”during that cycle, since it can’t deliver energy until it’s off again. But this 
causes the output voltage to drop even further; if the loop isn’t designed to handle this, the 
voltage just keeps dropping. This, then, is a 180” phase shift, the essence of a RHP zero: 
increasing the duty cycle decreases the output voltage. 

Remember from the earlier part of this chapter that an RHP zero causes the gain to 
go flat while the phase is still decreasing, making it difficult to guarantee stability. As a 
rule, the bandwidth of the converter will be designed to ensure that the RHP zeros occur at 
much higher frequencies than the bandwidth. But, caution! These zeros move with load. 
So, you need to check all four comers of the converter’s operation to make sure you’re not 
going to have problems with RHP zeros. 

Nyquist Plots 

Since the Bode plot of a non-minimum-phase system isn’t enough to be able to determine 
stability, we need to use a different display of the information, called a Nyquist plot. 
Remember that the Bode plot consists of two graphs, one showing (the logarithm of) the 
root of the sum of the squares of the imaginary and real parts of the transfer function: 

magnitude = Jm 
and the other showing the phase: 

phase = a r c t a n g )  

both as hc t ions  of frequency. Instead of this, the Nyquist plot plots the imaginary part on 
the y axis and the real part on the x axis, on a single graph (see Figure 6.34). 

The important point on a Nyquist plot is “real part = -1, imaginary part= 0.” 
Figure 6.34A shows the overall view of a Nyquist plot on a large scale (200 units per 
division). You can see that the graph goes around (- 1,O) once in the clockwise direction, 
but because of the scale of the axes, you can’t make out details of what’s happening close 
up to (-1,O). The expanded picture, zoomed in to 1 unit per division (Figure 6.348), 
reveals detail that isn’t visible on the coarser graph: the graph goes once around (- 1,O) in 
the counterclockwise direction [it also contains another loop, but this doesn’t matter 
because it doesn’t enclose (-l,O)]. The net result is that (-1,O) is encircled zero 
times: clockwise + counterclockwise = - I  + 1 = 0. This guarantees that the system is 
stable: 

A Nyquist plot represents a stable system if 
there are zero net encirclements of (--l,O). 

As a practical matter, a measured Nyquist plot won’t be closed the way this 
demonstration figure is because your measurement doesn’t go down to OHz nor up to 
infinity hertz. Nevertheless, measuring the converter response over the normal frequency 
range, say lOHz to 100kHz, is sufficient to determine the stability because the gain below 
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Figure 6.34 (A)  Nyquist plot of a stable system. ( B )  Close-up ofthe area around (-1,O). 
(Modified from Ref. 3, p. 367.) 

the low end is constant, and is less than 1 above the high end; encirclements of (-1,O) all 
occur in the same band of frequencies you would be using if you looked at the Bode plot 
instead. 

SOME CONCEPTS OF SYSTEM STABILITY 

Input and Output Impedance 

As a final topic in practical feedback design, we’re going to talk briefly about converter 
impedance and its relationship to system stability. Here “system stability” refers in 
particular to the stability of a group of converters interacting with each other. This is a 
situation frequently encountered in practical design work: for example, your 5V output 
converter is going to have a 3.3V output converter hung on its output; or your off-line 
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power factor correction converter produces 300VDC, and you’re going to use a second 
converter to step it down to f 12V. The key question for stability, it turns out, is what input 
and output impedance the converters must have to ensure that the system as a whole is 
stable. 

Converter input impedance is a measure of how much the input voltage changes 
when the input current changes. As such, it is closely related to the transfer function of the 
converter. Figure 6.35 illustrates a generic method of measurement. 

V I  

Network 
analyzer 
source 

Normal 1 - 

supply I 

Normal 
load 

Figure 6.35 Block diagram of method of measuring converter input impedance: 
z,,= V J I .  

The idea is that the converter is run with a normal load and a normal input supply 
voltage. Superposed on top of the normal supply voltage, however, is a small AC signal, a 
swept sine from a network analyzer. As the frequency of this input voltage varies, the 
amplitude of the input current does also, and the ratio of these two is the input impedance, 
Zi, = V / t ,  as a function of frequency. 

The only tricky part is remembering to use a scale factor: usually the output of a 
current probe is lOmV per division. So, for example, if you use a 1 : 1 probe for measuring 
the voltage, and the current probe is set to lA/div, then l Q =  lV/ lA= 
lV/(lOmV/A)= 100=40dB, that is, the 40dB mark on the network analyzer will be 
equal to 1R. 

Practical Note For high power inputs, it may be necessary to use an amplifier to 
drive the transformer, rather than driving it directly from the network analyzer. You’ll 
find that a good audio amp works well here; actually, one of the old linear (vacuum 
tube) amps is best because of its low harmonic distortion. 

Exactly this measurement was performed on the buck converter we’ve designed in 
this chapter. Figure 6.36 shows the plot that was generated. 

Let’s take a close look at the results of this measurement. At low frequencies, we see 
that the impedance is approximately flat. Indeed, we expect that the input impedance at low 
frequencies will be a constant: it should be just the input voltage divided by the input 
current. For this buck, that is 15V/0.78A = 19.2R = 25dB-R, which should show up as 
(25+40)=65dB on the graph, which is right on the money. (Actually 780mA is the 
measured input current, not calculated. As an aside, you might notice that input power is 
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Figure 6.36 Input impedance of the buck converter. 

10k 

15V x 780mA = 11.7W, and output power is 5V x 2A= low, so this converter has an 
efficiency of 85%.) 

Remember that the phase is - 180” at these low frequencies because a converter is a 
constant power load: if you increase the input voltage, the input current decreases! It is this 
effect that will cause problems when we consider system stability. (Phase is not shown i n  
the measured plot. It’s of no real importance unless you’re cutting it very close when you 
get around to considering system stability; see below.) 

As a further note, you hear people referring to the converter as a “negative 
impedance.” In fact, they are referring to this 1 8 0  phase shift, and the statement is true 
only at low tiequencies. 

As the frequency starts increasing, the input capacitor becomes equal to the 
converter in magnitude of impedance: 

= 38Hz 
1 

2n x 19.211 x 220pF 
f = -  
’ 

Above this frequency, the input is predominantly capacitive with a 9 0  phase shift. We can 
check this by looking at the cursor: 42dB scales to 2dBQ = I .26Q at 500Hz, or 

= 253pF 
I 

2 1 ~  x 500Hz x 1.2611 
C =  

which agrees reasonably well with the 220pF that was used. 
At around the resonant tank frequency, we see a little bit of activity, but it is not 

nearly as pronounced as in the open loop case because the entire converter is in parallel 
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with the input capacitance. Then at the top frequencies being measured, we see the gain 
starting to flatten as the ESR of the input capacitor cuts in: 

C =  = 5.2kHz 
1 

271 0.12R x 250pF 
with the measured ESR of 120mR. 

The input impedance of the converter thus looks like a “negative resistance” at low 
frequencies, like a capacitor at intermediate frequencies, and like a positive resistance at 
high frequencies. Of course, if you go high enough in frequency, you’ll start seeing 
inductance as well, but at these frequencies, it may become necessary to consider also the 
cabling used in the system. System cabling can be very important to system stability in 
certain cases. 

Converter Output Impedance 

Converter output impedance is very similar in concept to input impedance: When I jiggle 
the load current, how much does the output voltage change? Ideally, of course, we would 
like this change to be zero, because we want an output voltage that is independent of load. 

A circuit for measuring output impedance is shown in Figure 6.37. In this circuit, the 
network analyzer provides both a DC offset and a swept sine. It drives an electronically 
controllable load, which pulls both DC and AC current from the converter. (Make sure the 
amplitude of the AC current is small enough to ensure that the load is always pulling 
current-it can’t source current!) The output impedance is Zout= V / I  as a function of 
frequency. 

V I  

1 - Normal 
Electronically 
variable load Network 

analyzer 
source * * 

Figure 6.37 Block diagram of method of measuring converter output impedance: 
z,,, = V / I .  

Practical Note You don’t want to put a resistive load in parallel with the electronic 
load, since changing the output voltage changes the current through the resistor. 

Using the buck converter once more, a measurement was made of the output 
impedance (remember the scale factor, again). Figure 6.38 is a typical-looking plot for 
output impedance. Take note that the scale is offset from the one in Figure 6.36 for input 
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Figure 6.38 Output impedance of the buck converter. 

impedance (1  R = 40dB is almost at the top of the graph). At low frequencies, the output is 
inductive. In fact, we have at 100Hz, from the cursor, that the impedance is 10.3dB, which 
is -29.7dB-R = 32.7mQ so the inductance is 

= 49pH 
1 

2n x IOOHz x 32.7mR 
L =  

agreeing well with the actual value of 35pH. At the output tank resonant frequency, the 
output impedance peaks and thereafter is controlled by the output capacitor (you can again 
see the ESR at the top frequencies). 

Two Stable Converters Can Make an Unstable System! 

This rather shocking idea brings us to the forefront of today’s research in power systems. It 
is quite possible (and indeed frequently happens) that you have two converters, each of 
which is stable with plenty of phase margin; but when the one is connected as a load to the 
other, the system, meaning here both their output voltages, oscillates! Figure 6.39 
diagrams the problem. 

Here is a rule of thumb to ensure that attaching two stable converters together in 
series won’t cause oscillations: 

1 Practical Note If possible, ensure that 

1. The output impedance of the first converter is less than the input impedance 

2. The bandwidth of the first converter is greater than the bandwidth of the 
of the second converter at all frequencies. 

second converter. 
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Figure 6.39 Two stable converters in series can form an unstable system. 

This is merely a convenient way of ensuring stability; a system can be stable even if 
it doesn't meet this rule, although the question then becomes substantially more involved. 
When you are actually setting up such a system, of course, you need to verify that each 
individual converter is stable before attaching the set together! 

8.Oldiv 

=In-+ 

10 Log Hz 

Figure 6.40 Input and output impedances superposed. 
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Example of an Unstable System 

We have designed the compensation of our buck converter to produce a stable device. Let’s 
suppose that for some (crazy) reason we connect two of these bucks in series. (That is, we 
would reset the first one to produce an output voltage of 15V so that it could run the 
second one. This could be accomplished by making the first converter run from 45Vin, and 
tripling the switching frequency so that all the components retain their values; the loop and 
the impedances of the converter would then remain the same.) 

How well does this system comply with the rules given above? Admittedly, rule 2 is 
marginally OK; at least the downstream converter doesn’t have E bandwidth than the 
upstream one does. But rule 1 is definitely violated, as can be seen in Figure 6.40. 

A look at the superposition of the input and output impedances shows that the source 
impedance (output impedance) is greater than the load impedance (input impedance) at 
frequencies greater than about I.2kHz. This doesn’t guarantee that the system will be 
unstable (you actually have to examine system, as opposed to converter, phase margin), but 
don’t be surprised to see the 15V and the 5V outputs oscillating at about 1.2kHz! 

SOME THOUGHTS ON THE ROLE OF SIMULATIONS 

Although this book explicitly avoids talking about simulations, a few comments are in 
order here, because it is in the area of stabilizing converters that people most frequently 
turn to simulations. 

For many years now, people (read managers) have been talking about the possibility 
of designing power supplies using just simulations, no breadboarding. Leaving aside the 
problematic existence of adequate computing power, one can see without going into the 
details that such a thing might be possible. To aid in this visualization, consider a 
simulation of the open loop of the buck converter we’ve been dealing with (Figure 6.41). 

We’re not going to discuss this simulation in any detail. Figure 6.41 shows a 
pseudodrawing of the blocks of an open loop buck, including a state-space-averaged 
switch model; the listing is part of a SABER listing, and the plots were generated using the 
SABER simulator. The names in circles are the node names, and the other names are the 
part names and values. Further information on simulations can be obtained from a number 
of books. At any rate, you can see that the simulation, shown in Figure 6.42, matches the 
measurements pretty well, certainly well enough to allow you to design the compensation, 
and that compensation would have the same values we came up with before. The trouble is, 
even assuming the data on ESR and so on are available from data books (which is only 
occasionally true), the model says nothing about switching. Thus you have to build either a 
much more complex model or a breadboard-in which case you’ve defeated the purpose 
of the simulation! Besides, unless you are vevy experienced (and even then), you need to 
measure a working unit to verify that you’ve built the simulation model correctly. It’s so 
easy to type in incorrect numbers and assume that because the computer gave you an 
answer, this output corresponds to reality! 

In the author’s view, nothing is gained by using simulation to design a compensation, 
in part because doing it by real measurements is so easy. Simulation is useful in measuring 
worst case: it can be almost impossible in the lab to find components at their minimum or 
maximum values, whereas with a simulation it’s easy. Simulation and breadboarding are 
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Figure 6.41 Simulation model of the buck converter open loop: circles 
enclose node names; see accompanying listing. 
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f (Hz) 

Figure 6.42 SABER simulation of open loop buck converter: both curves, OUT/AC. 
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thus complementary, not opposing: breadboarding is for doing the design, simulation is for 
worst-case analysis. 
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