Whitaker, Jerry C. "Frontmatter" *Power Vacuum Tubes Handbook 2nd Edition.* Ed. Jerry C. Whitaker Boca Raton: CRC Press LLC, 2000

ELECTRONICS HANDBOOK SERIES

Series Editor: **Jerry C. Whitaker**

Technical Press Morgan Hill, California

PUBLISHED TITLES

AC POWER SYSTEMS HANDBOOK, SECOND EDITION

Jerry C. Whitaker

THE ELECTRONIC PACKAGING HANDBOOK Glenn R. Blackwell

POWER VACUUM TUBES HANDBOOK, SECOND EDITION Jerry C. Whitaker

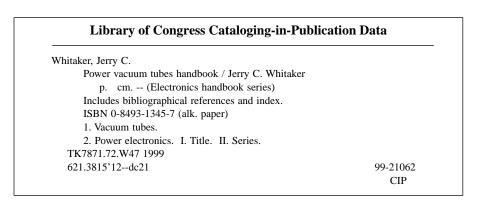
INTERCONNECTING ELECTRONIC SYSTEMS Jerry C. Whitaker and Gene DeSantis

FORTHCOMING TITLES

ELECTRONIC SYSTEMS MAINTENANCE HANDBOOK Jerry C. Whitaker

FORMULAS FOR THERMAL DESIGN OF ELECTRONIC EQUIPMENT Ralph Remsberg

THE RESOURCE HANDBOOK OF ELECTRONICS


Jerry C. Whitaker

Jerry C. Whitaker

CRC Press Boca Raton London New York Washington, D.C.

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe.

© 1999 by CRC Press LLC

No claim to original U.S. Government works International Standard Book Number 0-8493-1345-7 Library of Congress Card Number 99-21062 Printed in the United States of America 1 2 3 4 5 6 7 8 9 0 Printed on acid-free paper

Preface

The phrase "high technology" is perhaps one of the more overused descriptions in our technical vocabulary. It is a phrase generally reserved for discussion of integrated circuits, fiber optics, satellite systems, and computers. Few people would associate high technology with vacuum tubes. The notion that vacuum tube construction is more art than science may have been true 10 or 20 years ago, but today it's a different story.

The demand on the part of industry for tubes capable of higher operating power and frequency, and the economic necessity for tubes that provide greater efficiency and reliability, have moved power tube manufacturers into the high-tech arena. Advancements in tube design and construction have given end users new transmitters and RF generators that allow industry to grow and prosper.

If you bring up the subject of vacuum tubes to someone who has never worked on a transmitter or high-power RF generator, you are likely to get a blank stare and a question: "Do they make those anymore?" Although receiving tubes have more-or-less disappeared from the scene, power tubes are alive and well and are performing vital functions in thousands of divergent applications. Solid-state and tube technologies each have their place, each with its strengths and weaknesses. It should be noted that even receiving tubes are staging somewhat of a comeback in high-end audio applications.

Tube design and development, although accompanied by less fanfare, is advancing as are developments in solid-state technology. Power tubes today are designed with an eye toward high operating efficiency and high gain/bandwidth properties. Above all, a tube must be reliable and provide long operating life. The design of a new power tube is a lengthy process that involves computer-aided calculations and advanced modeling.

Despite the inroads made by solid-state technology, the power vacuum tube occupies—and will continue to occupy—an important role in the generation of high-power radio frequency energy in the high-frequency regions and above. No other device can do the job as well. Certainly, solid-state cannot, especially if cost, size, and weight are important considerations.

The field of science encompassed by power vacuum tubes is broad and exciting. It is an area of growing importance to military and industrial customers, and a discipline in which significant research is now being conducted.

Power vacuum tubes include a wide range of devices, each for specific applications. Devices include power grid tubes (triodes, tetrodes, and pentodes) and microwave power tubes (klystrons, traveling wave tubes, gyrotrons, and numerous other high-frequency devices). Research is being conducted for both tube classes to extend output power and maximum frequency, and to improve operating efficiency.

This book examines the underlying technology of each type of power vacuum tube device in common use today and provides examples of typical applications. New development efforts also are reported, and the benefits of the work explained.

This Second Edition of *Power Vacuum Tubes* is directed toward engineering personnel involved in the design, specification, installation, and maintenance of high-power equipment utilizing vacuum tubes. Basic principles are discussed, with emphasis on how the underlying technology dictates the applications to which each device is dedicated. Supporting mathematics are included where appropriate to explain the material being discussed. Extensive use of technical illustrations and schematic diagrams aid the reader in understanding the fundamental principles of the subject.

Today's modern power tube is unlike the power tubes in use a decade ago. And with the trend in industry toward operation at higher power levels and higher frequencies, the vacuum tube is certain to remain on the scene for a long time to come.

Jerry C. Whitaker

For updated information on this and other engineering books, visit the web site www.technicalpress.com

About the Author

Jerry Whitaker is a technical writer based in Morgan Hill, California, where he operates the consulting firm *Technical Press*. Mr. Whitaker has been involved in various aspects of the communications industry for more than 20 years. He is a Fellow of the Society of Broadcast Engineers and an SBE-certified Professional Broadcast Engineer. He is also a member and Fellow of the Society of Motion Picture and Television Engineers, and a member of the Institute of Electrical and Electronics Engineers. Mr. Whitaker has written and lectured extensively on the topic of electronic systems installation and maintenance.

Mr. Whitaker is the former editorial director and associate publisher of *Broadcast Engineering* and *Video Systems* magazines. He is also a former radio station chief engineer and TV news producer.

Mr. Whitaker is the author of a number of books, including:

- AC Power Systems, 2nd Edition, CRC Press, 1998.
- DTV: The Revolution in Electronic Imaging, McGraw-Hill, 1998.
- Editor-in-Chief, NAB Engineering Handbook, National Association of Broadcasters, 1998.
- Editor-in-Chief, The Electronics Handbook, CRC Press, 1996.
- Coauthor, Communications Receivers: Principles and Design, McGraw-Hill, 1996.
- Electronic Displays: Technology, Design, and Applications, McGraw-Hill, 1994.
- · Coauthor, Interconnecting Electronic Systems, CRC Press, 1992.
- Coeditor, *Television Engineering Handbook*, revised edition, McGraw-Hill, 1992.
- · Coeditor, Information Age Dictionary, Intertec/Bellcore, 1992.
- Maintaining Electronic Systems, CRC Press, 1991.
- Radio Frequency Transmission Systems: Design and Operation, McGraw-Hill, 1990.
- Coauthor, Television and Audio Handbook for Technicians and Engineers, McGraw-Hill, 1990.

Mr. Whitaker has twice received a Jesse H. Neal Award *Certificate of Merit* from the Association of Business Publishers for editorial excellence. He also has been recognized as *Educator of the Year* by the Society of Broadcast Engineers.

Acknowledgement

The author wishes to express appreciation to Varian Associates, whose support was invaluable in the preparation of this book.

Contents

Preface

About the Author

Chapter 1: Power Vacuum Tube Applications

- 1.1 Introduction
 - 1.1.1 Vacuum Tube Development
 - 1.1.2 Standardization
 - 1.1.3 Transmission Systems
- 1.2 Vacuum Tube Applications
 - 1.2.1 Market Overview
 - 1.2.2 AM Radio Broadcasting
 - 1.2.3 Shortwave Broadcasting
 - 1.2.4 FM Radio Broadcasting
 - 1.2.5 TV Broadcasting
 - 1.2.6 Satellite Transmission
 - 1.2.7 Radar
 - 1.2.8 Electronic Navigation
 - 1.2.9 Microwave Radio
 - 1.2.10 Induction Heating
 - 1.2.11 Electromagnetic Radiation Spectrum
- 1.3 Bibliography

Chapter 2: Modulation Systems and Characteristics

- 2.1 Introduction
 - 2.1.1 Modulation Systems
 - 2.1.2 Principles of Resonance
 - 2.1.3 Frequency Source
 - 2.1.4 Operating Class
 - 2.1.5 Broadband Amplifier Design
 - 2.1.6 Thermal and Circuit Noise
- 2.2 Amplitude Modulation
 - 2.2.1 High-Level AM Modulation
 - 2.2.2 Vestigial-Sideband Amplitude Modulation
 - 2.2.3 Single-Sideband Amplitude Modulation
 - 2.2.4 Quadrature Amplitude Modulation (QAM)
- 2.3 Frequency Modulation
 - 2.3.1 Modulation Index
 - 2.3.2 Phase Modulation
 - 2.3.3 Modifying FM Waves
 - 2.3.4 Preemphasis and Deemphasis

- 2.3.5 Modulation Circuits
- 2.4 Pulse Modulation
 - 2.4.1 Digital Modulation Systems
 - 2.4.2 Pulse Amplitude Modulation
 - 2.4.3 Pulse Time Modulation (PTM)
 - 2.4.4 Pulse Code Modulation
 - 2.4.5 Delta Modulation
 - 2.4.6 Digital Coding Systems
 - 2.4.7 Baseband Digital Pulse Modulation
 - 2.4.8 Spread Spectrum Systems
- 2.5 References
- 2.6 Bibliography

Chapter 3: Vacuum Tube Principles

- 3.1 Introduction
- 3.2 Characteristics of Electrons
 - 3.2.1 Electron Optics
 - 3.2.2 Thermal Emission From Metals
 - 3.2.3 Secondary Emission
 - 3.2.4 Diode
 - 3.2.5 Triode
 - 3.2.6 Tetrode
 - 3.2.7 Pentode
 - 3.2.8 High-Frequency Operating Limits
- 3.3 Vacuum Tube Design
 - 3.3.1 Device Cooling
 - 3.3.2 Cathode Assembly
 - 3.3.3 Grid Structures
 - 3.3.4 Plate Assembly
 - 3.3.5 Ceramic Elements
 - 3.3.6 Tube Construction
 - 3.3.7 Connection Points
 - 3.3.8 Tube Sockets
- 3.4 Neutralization
 - 3.4.1 Circuit Analysis
 - 3.4.2 Circuit Design
 - 3.4.3 Grounded-Grid Amplifier Neutralization
 - 3.4.4 Self-Neutralizing Frequency
 - 3.4.5 Neutralization Adjustment
- 3.5 References
- 3.6 Bibliography

Chapter 4: Designing Vacuum Tube Circuits

4.1 Introduction

- 4.1.1 Class A Amplifier
- 4.1.2 Class B and AB Amplifiers
- 4.1.3 Class C Amplifier
- 4.2 Principles of RF Power Amplification
 - 4.2.1 Drive Power Requirements
 - 4.2.2 Mechanical and Electrical Considerations
 - 4.2.3 Bypassing Tube Elements
 - 4.2.4 Parasitic Oscillations
 - 4.2.5 Shielding
 - 4.2.6 Protection Measures
- 4.3 Cavity Amplifier Systems
 - 4.3.1 Bandwidth and Efficiency
 - 4.3.2 Current Paths
 - 4.3.3 The 1/4-Wavelength Cavity
 - 4.3.4 The 1/2-Wavelength Cavity
 - 4.3.5 Folded 1/2-Wavelength Cavity
 - 4.3.6 Wideband Cavity
 - 4.3.7 Output Coupling
 - 4.3.8 Mechanical Design
- 4.4 High-Voltage Power Supplies
 - 4.4.1 Silicon Rectifiers
 - 4.4.2 Operating Rectifiers in Series
 - 4.4.3 Operating Rectifiers in Parallel
 - 4.4.4 Silicon Avalanche Rectifiers
 - 4.4.5 Thyristor Servo Systems
 - 4.4.6 Polyphase Rectifier Circuits
 - 4.4.7 Power Supply Filter Circuits
- 4.5 Parameter Sampling Circuits
- 4.6 References
- 4.7 Bibliography

Chapter 5: Applying Vacuum Tube Devices

- 5.1 Introduction
- 5.2 AM Power Amplification Systems
 - 5.2.1 Control Grid Modulation
 - 5.2.2 Suppressor Grid Modulation
 - 5.2.3 Cathode Modulation
 - 5.2.4 High-Level AM Amplification
 - 5.2.5 Pulse Width Modulation
- 5.3 Linear Amplification
 - 5.3.1 Device Selection
 - 5.3.2 Grid-Driven Linear Amplifier
 - 5.3.3 Cathode-Driven Linear Amplifier
 - 5.3.4 Intermodulation Distortion
- 5.4 High-Efficiency Linear Amplification

- 5.4.1 Chireix Outphasing Modulated Amplifier
- 5.4.2 Doherty Amplifier
- 5.4.3 Screen-Modulated Doherty-Type Amplifier
- 5.4.4 Terman-Woodyard Modulated Amplifier
- 5.4.5 Dome Modulated Amplifier
- 5.5 Television Power Amplifier Systems
 - 5.5.1 System Considerations
 - 5.5.2 Power Amplifier
- 5.6 FM Power Amplifier Systems
 - 5.6.1 Cathode-Driven Triode Amplifier
 - 5.6.2 Grounded-Grid vs. Grid-Driven Tetrode
 - 5.6.3 Grid-Driven Tetrode/Pentode Amplifiers
 - 5.6.4 Impedance Matching into the Grid
 - 5.6.5 Neutralization
- 5.7 Special-Application Amplifiers
 - 5.7.1 Distributed Amplification
 - 5.7.2 Radar
- 5.8 References
- 5.9 Bibliography

Chapter 6: Microwave Power Tubes

- 6.1 Introduction
 - 6.1.1 Linear-Beam Tubes
 - 6.1.2 Crossed-Field Tubes
- 6.2 Grid Vacuum Tubes
 - 6.2.1 Planar Triode
 - 6.2.2 High-Power UHF Tetrode
 - 6.2.3 Diacrode
- 6.3 Klystron
 - 6.3.1 Reflex Klystron
 - 6.3.2 The Two-Cavity Klystron
 - 6.3.3 The Multicavity Klystron
 - 6.3.4 Beam Pulsing
 - 6.3.5 Integral vs. External Cavity
 - 6.3.6 MSDC Klystron
- 6.4 Klystrode/Inductive Output Tube (IOT)
 - 6.4.1 Theory of Operation
 - 6.4.2 Electron Gun
 - 6.4.3 Grid Structure
 - 6.4.4 Input Cavity
 - 6.4.5 Output Cavity
 - 6.4.6 Application Considerations
 - 6.4.7 Continuing Research Efforts
- 6.5 Constant Efficiency Amplifier
 - 6.5.1 Theory of Operation

- 6.6 Traveling Wave Tube
 - 6.6.1 Theory of Operation
 - 6.6.2 Operating Efficiency
 - 6.6.3 Operational Considerations
- 6.7 Crossed-Field Tubes
 - 6.7.1 Magnetron
 - 6.7.2 Backward Wave Oscillator
 - 6.7.3 Strap-Fed Devices
 - 6.7.4 Gyrotron
- 6.8 Other Microwave Devices
 - 6.8.1 Quasiquantum Devices
 - 6.8.2 Variations on the Klystron
- 6.9 Microwave Tube Life
 - 6.9.1 Life-Support System
 - 6.9.2 Protection Measures
 - 6.9.3 Filament Voltage Control
 - 6.9.4 Cooling System
 - 6.9.5 Reliability Statistics
- 6.10 References
- 6.11 Bibliography

Chapter 7: RF Interconnection and Switching

- 7.1 Introduction
- 7.1.1 Skin Effect
- 7.2 Coaxial Transmission Line
 - 7.2.1 Electrical Parameters
 - 7.2.2 Electrical Considerations
 - 7.2.3 Coaxial Cable Ratings
 - 7.2.4 Mechanical Parameters
- 7.3 Waveguide
 - 7.3.1 Propagation Modes
 - 7.3.2 Ridged Waveguide
 - 7.3.3 Circular Waveguide
 - 7.3.4 Doubly Truncated Waveguide
 - 7.3.5 Impedance Matching
 - 7.3.6 Installation Considerations
 - 7.3.7 Cavity Resonators
- 7.4 RF Combiner and Diplexer Systems
 - 7.4.1 Passive Filters
 - 7.4.2 Four-Port Hybrid Combiner
 - 7.4.3 Non-Constant-Impedance Diplexer
 - 7.4.4 Constant-Impedance Diplexer
 - 7.4.5 Microwave Combiners
 - 7.4.6 Hot Switching Combiners
 - 7.4.7 Phased-Array Antenna Systems

- 7.5 High-Power Isolators
 - 7.5.1 Theory of Operation
 - 7.5.2 Applications
- 7.6 References
- 7.7 Bibliography

Chapter 8: Cooling Considerations

- 8.1 Introduction
 - 8.1.1 Thermal Properties
 - 8.1.2 Heal Transfer Mechanisms
 - 8.1.3 The Physics of Boiling Water
- 8.2 Application of Cooling Principles
 - 8.2.1 Forced-Air Cooling Systems
 - 8.2.2 Water Cooling
 - 8.2.3 Vapor-Phase Cooling
 - 8.2.4 Temperature Measurements
 - 8.2.5 Air-Handling System
- 8.3 Operating Environment
 - 8.3.1 Air-Handling System
 - 8.3.2 Air Cooling System Design
 - 8.3.3 Site Design Guidelines
 - 8.3.4 Water/Vapor Cooling System Maintenance
- 8.4 References
- 8.5 Bibliography

Chapter 9: Reliability Considerations

- 9.1 Introduction
 - 9.1.1 Terminology
- 9.2 Quality Assurance
 - 9.2.1 Inspection Process
 - 9.2.2 Reliability Evaluation
 - 9.2.3 Failure Analysis
 - 9.2.4 Standardization
- 9.3 Reliability Analysis
 - 9.3.1 Statistical Reliability
 - 9.3.2 Environmental Stress Screening
 - 9.3.3 Latent Defects
 - 9.3.4 Operating Environment
 - 9.3.5 Failure Modes
 - 9.3.6 Maintenance Considerations
- 9.4 Vacuum Tube Reliability
 - 9.4.1 Thermal Cycling
 - 9.4.2 Tube-Changing Procedure
 - 9.4.3 Power Tube Conditioning

- 9.4.4 Filament Voltage
- 9.4.5 Filament Voltage Management
- 9.4.6 PA Stage Tuning
- 9.4.7 Fault Protection
- 9.4.8 Vacuum Tube Life
- 9.4.9 Examining Tube Performance
- 9.4.10 Shipping and Handling Vacuum Tubes
- 9.5 Klystron Reliability
 - 9.5.1 Cleaning and Flushing the Cooling System
 - 9.5.2 Cleaning Ceramic Elements
 - 9.5.3 Reconditioning Klystron Gun Elements
 - 9.5.4 Focusing Electromagnet Maintenance
 - 9.5.5 Power Control Considerations
- 9.6 References
- 9.7 Bibliography

Chapter 10: Device Performance Criteria

- 10.1 Introduction
- 10.2 Measurement Parameters
 - 10.2.1 Power Measurements
 - 10.2.2 Decibel Measurement
 - 10.2.3 Noise Measurement
 - 10.2.4 Phase Measurement
 - 10.2.5 Nonlinear Distortion
- 10.3 Vacuum Tube Operating Parameters
 - 10.3.1 Stage Tuning
 - 10.3.2 Amplifier Balance
 - 10.3.3 Parallel Tube Amplifiers
 - 10.3.4 Harmonic Energy
 - 10.3.5 Klystron Tuning Considerations
 - 10.3.6 Intermodulation Distortion
 - 10.3.7 VSWR
- 10.4 RF System Performance
 - 10.4.1 Key System Measurements
 - 10.4.2 Synchronous AM in FM Systems
 - 10.4.3 Incidental Phase Modulation
 - 10.4.4 CarrierAmplitude Regulation
 - 10.4.5 Site-Related Intermodulation Products
- 10.5 References
- 10.6 Bibliography

Chapter 11: Safe Handling of Vacuum Tube Devices

- 11.1 Introduction
- 11.2 Electric Shock

11.2.1 Effects on the Human Body

11.2.2 Circuit Protection Hardware

11.2.3 Working with High Voltage

11.2.4 First Aid Procedures

11.3 Operating Hazards

11.3.1 OSHA Safety Considerations

11.3.2 Beryllium Oxide Ceramics

11.3.3 Corrosive and Poisonous Compounds

11.3.4 FC-75 Toxic Vapor

11.3.5 Nonionizing Radiation

11.3.6 X-Ray Radiation Hazard

11.3.7 Implosion Hazard

11.3.8 Hot Coolant and Surfaces

11.3.9 Polychlorinated Biphenyls

11.4 References

11.5 Bibliography

Chapter 12: Reference Data

Chapter 13: Glossary

Index of Figures

Index of Tables

Cited References

This book is dedicated to my daughter Alexis Ann Whitaker My greatest joy is watching you grow up