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Figure 7.33 Hybrid switching configurations: (a) phase set so that the combined en-
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Cooling Considerations
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Figure 8.29 Case study in which excessive back pressure to the PA cavity was experi-
enced during winter periods, when the rooftop damper was closed. The problemwas
eliminated by repositioning the damper as shown. 461
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Figure 9.1 Example fault tree analysis diagram: (a) process steps, (b) fault tree sym-
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Figure 9.9 Estimation of the probable time to failure from an abnormal solder joint.
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Figure 9.10 Proper fingerstock scoring of filament and control grid contacts on a
power tube. 493

Figure 9.11 Damage to the grid contact of a power tube caused by insufficient
fingerstock pressure. 493
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ment power tube: (a) useful life as a function of filament voltage, (b) available
power as a function of filament voltage. Note the dramatic increase in emission
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Figure 9.13 The effect of klystron emitter temperature on beam current. 501

Figure 9.14 Arc protection circuit utilizing an energy-diverting element. 503
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(b) normal wear. 507
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Figure 9.21 Electrical connections for reconditioning the gun elements of a klystron.
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Device Performance Criteria

Figure 10.1 Root-mean-square (rms) voltage measurements: (a) the relationship of
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average measurement circuit. 526
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Figure 10.12 Simplified block diagram of a harmonic distortion analyzer. 537

Figure 10.13 Typical test setup for measuring the harmonic and spurious output of a
transmitter. The notch filter is used to remove the fundamental frequency to prevent
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ponents. 538

Figure 10.14 Conversion graph for indicated distortion and true distortion. 538

Figure 10.15 Example of interference sources in distortion and noise measurements.
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Figure 10.16 Transfer-function monitoring configuration using an oscilloscope and
distortion analyzer. 539
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Figure 10.27 RF output power of a klystron as a function of RF drive power. 555
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Figure 10.33 The generation of synchronous AM in a bandwidth-limited FM system.
Note that minimum synchronous AM occurs when the system operates in the center
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Safe Handling of Vacuum Tube Devices

Figure 11.1 Electrocardiogram of a human heartbeat: (a) healthy rhythm, (b) ventricu-
lar fibrillation. 577

Figure 11.2 Effects of electric current and time on the human body. Note the “let-go
range. 578

Figure 11.3 Basic design of a ground-fault interrupter (GFI). 579
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