
IM3201-01 

DRE DREAsm Assembler Manual 

Wavefront Semiconductor ∴ 200 Scenic View Drive ∴ Cumberland, RI  02864 ∴ U.S.A. 
Tel: +1 401 658-3670 ∴ Fax: +1 401 658-3680 ∴ Email: info@wavefrontsemi.com 

On the web at www.wavefrontsemi.com 

1 
IM3201-01-0305 

 
 

Introduction 

The DREAsm assembler is a command-line program which takes in a text file listing of an 
assembly program written for the DRE and parses it, does error checking, and outputs an object 
file suitable for inclusion for a microcontroller download into the chip.  This manual gives a 
description of the various formats of parameters and statements recognized by the DREAsm 
assembler. 
 
 
 

Table of Contents 

Introduction ……………………….................................................. 1 

Table of Contents ……………………............................................. 1 

Invoking the Assembler …………………................................….… 2 

General Information ………………............................................... 2 

Formats …………………………………….................................……… 2 

 Address Format ………......................……………..............… 2 

 Coefficient Format ………….....................……............…….. 2 

 LFO Setup Instruction Format ......................................... 3 

 Multiply/Accumulate Instruction Format ………............…. 4 

Statements ………………………......................…….............…..…… 6 

 ABS Statement …………......................…...…............……… 6 

 EQU Statement …………….....................………............…… 6 

 MEM Statement …………………….................................….. 7 

 SEG Statement ……………….....................……............…… 8 

Reserved Memory Labels …....................................................... 8 

Comments ………………………………….....................…..........…… 8 

Notice and Contact Information .......……………………….......…. 9 

 



 

 

 

www.wavefrontsemi.com 

2 

Invoking the Assembler 

To invoke the assembler from the command line, type: 

DREAsm    filename 

where  filename  is the name of the DRE Assembly file you wish to assemble.  The assembler 
will expand that name to “filename.asm”.  The hex output file’s name will be “filename.obj”. 
 
 
 

General Information 

DREAsm is not case-sensitive, ignores blank lines, and treats multiple tabs or spaces as a single 
space.  Each instruction takes up one line. 
 
 
 

Address Format 

Addresses may be entered in hexadecimal or decimal format.  To specify a hexadecimal address, 
prefix the number with a dollar sign ($) or “0x” or suffix it with an “H”. 

For example, the following instructions all specify the same address: 

 RZP $4  K=0.5  ; Read address 4 times 0.5 
 RZP 004H  K=0.5  ; Read address 4 times 0.5 
 RZP 4  K=0.5  ; Read address 4 times 0.5 
 RZP 0x04  K=0.5  ; Read address 4 times 0.5 
 
 
 

Coefficient Format 

Coefficients may be entered in a variety of numerical formats, including binary, octal, 
hexadecimal, and real decimal.  To specify a binary number, either use the percentage symbol 
prefix (%) or a “B” suffix.  To specify an octal number, suffix the value with a “Q”.  To specify a 
hexadecimal number, either prefix the number with a dollar sign ($), prefix it with a “0x”, or 
suffix it with an “H”.  To specify a real decimal number, just enter the number.  A real decimal 
number can have a decimal point, and it can be prefixed with a plus (+) or minus (-) sign. 

All MAC Instruction coefficients in the DRE are stored as fixed-point, sign-magnitude values in 
the format S.7.  The S signifies the sign bit, the period signifies the binary point, and the 7 
signifies the number of fractional bits.  When a number is written as binary, octal, or 
hexadecimal, it is written as a right-justified number with no separation between the integer and 
fractional bits, and unspecified leading bits are assumed to be zero.  When a number is written 
as a decimal value, however, it can be written the same way as the other radices, or with the 
decimal point corresponding to the binary point of the S.7 value.   

For example, all of the following are ways of representing the number -0.34375 in S.7 format: 

Binary:  %10101100  Hexadecimal: $AC 
10101100B    0xAC 

        ACH 
 
Octal:  254Q   Decimal: -0.34375 

     -44 
        172 



 

 

 

www.wavefrontsemi.com 

3 

A simple way to convert a decimal into a hex, octal, or binary coefficient suitable for the compiler 
is to shift the binary point to the rightmost position for the calculation in order to make it an 
integer.  For example, to see what the decimal value 0.1796875 looks like in the S.7 hex, octal, 
or binary value for the compiler: 

 Multiply it by 27 (thus making the S.7 into S7): 
  0.1796875 x 27 =  0.1796875 x 128 =  23 = 17H =   27Q =       10111B 
 
 For the value -0.1796875: 
 -0.1796875 x 27 = -0.1796875 x 128 = -23 = 97H = 227Q = 10010111B 
       *Note that the value is trimmed to be 8 bits. 
 
 
 

LFO Setup Instruction Format 

The DRE has four low frequency oscillators (LFOs) which must be set up before use.  These 
instructions may occur anywhere in the assembly file.  To set the parameters (amplitude, 
frequency, and waveshape), use the LFO Setup Instruction, formatted as follows: 

LFOn    WAVESHAPE    AMP=a    FREQ=f    [XFAD=x]    [; COMMENTS] 

Note: Square brackets “[“ and “]” denote optional fields. 

Select LFOs 0-3 by setting n.  WAVESHAPE can be either "SIN" for sinusoid, "TRI" for triangle 
wave, or "SAW" for sawtooth.  The AMPlitude coefficient is a 15-bit unsigned number (a range of 
0-32767 or $0-$7FFF), and gives a waveform amplitude of ±AMP/8 samples.  The FREQuency 
coefficient is a 13-bit unsigned number (a range of 0-8191 or $0-$1FFF).  XFAD selects the 
crossfade shape to use for pitch transposition algorithms.  This setting is only valid when the 
waveshape is set to SAW.  Valid crossfade settings are: 1, 1/2, 1/8, 1/16. 

To calculate the frequency produced by the oscillators, use the following formulae. 

F(Sinusoids) = (f/M) Fs/(2π) 

   where 
   f = 13-bit frequency coefficient FREQ, 
   Fs = Sample rate, 
   M = 262143 (0x3FFFF, internal maximum 18 bit value). 

    For a sample rate of 48kHz, F(Sinusoids) = 0.029142 f 

F(Triangles) = (f/M) Fs (C/4H) 

   where 
   f = 13-bit frequency coefficient FREQ, 
   Fs = Sample rate, 
   C = 4194304 (0x400000, a constant used internally in the LFO), 
   M = 262143 (0x3FFFF, internal maximum 18-bit value), 
   H = 8388607 (0x7FFFFF, maximum positive 24-bit value). 

    For a sample rate of 48kHz, F(Triangles) = 0.022888 f 

F(Sawtooths) = 2 F(Triangles) 

    For a sample rate of 48kHz, F(Triangles) = 0. 045777 f 

For example: 

LFO0 SIN AMP=0x3FFF FREQ=0x200   ; 14.9Hz, 1/2 amplitude sine 
LFO1 TRI AMP=10000 FREQ=3000   ; 68.7Hz triangle 
LFO2 SAW AMP=$400 FREQ=512 XFAD=1/8 ; 11.7Hz, 1/32 amplitude saw 

 

 



 

 

 

www.wavefrontsemi.com 

4 

Multiply/Accumulate Instruction Format 

The Multiply/Accumulate (MAC) Instruction format is generally as follows: 

[CHRn] OPCODE ADDRESS [[K=]COEFFICIENT|CHORUS CONTROLS] [; COMMENTS] 

Note: Square brackets “[“ and “]” denote optional fields. 

CHRn selects a chorus instruction, and the n selects the associated LFO to drive the instruction.  
The ADDRESS specifies an I/O (address 0 is the left channel, address 1 is the right), a relative 
Data RAM address, or a memory label.  The COEFFICIENT specifies the multiplier value, and if 
omitted, is assumed to be 0.  CHORUS CONTROLS are an unordered list of parameters which 
activate certain functions for a chorus instruction. 

The following opcode mnemonics control the basic functions of the MAC.  It defines a read or 
write operation, and selects which register (none, Acc, B, or C) is added to the multiplier output.  
Register B can store the current instruction’s multiplicand, and register C can store the same 
value as Acc. 

Read Instructions 
For read operations, Product = K*[ADDRESS], so register B stores either the Left Input, Right 
Input, or the Data RAM value specified by the address or label. 

RZP Read, Acc = Zero  + Product 
RAP Read, Acc = Acc  + Product 
RBP Read, Acc = B Register + Product 
RCP Read, Acc = C Register + Product 

RZPB Read, Acc = Zero + Product, Load B register 
RAPB Read, Acc = Acc + Product, Load B register 
RBPB Read, Acc = B Register + Product, Load B register 
RCPB Read, Acc = C Register + Product, Load B register 

RZPC Read, Acc = Zero + Product, Load C register 
RAPC Read, Acc = Acc + Product, Load C register 
RBPC Read, Acc = B Register + Product, Load C register 
RCPC Read, Acc = C Register + Product, Load C register 

RZPBC Read, Acc = Zero + Product, Load B and C registers 
RAPBC Read, Acc = Acc + Product, Load B and C registers 
RBPBC Read, Acc = B Register + Product, Load B and C registers 
RCPBC Read, Acc = C Register + Product, Load B and C registers 

Write Instructions 
For write operations, Product = k*Acc, so register B stores the Acc value from the last tick.  
Writes to memory stores the result of the previous instruction, while writes to outputs transfers 
the result of the current instruction. 

WZP Write, Acc = Zero + Product 
WAP Write, Acc = Acc + Product 
WBP Write, Acc = B Register + Product 
WCP Write, Acc = C Register + Product 

WZPB Write, Acc = Zero + Product, Load B register 
WAPB Write, Acc = Acc + Product, Load B register 
WBPB Write, Acc = B Register + Product, Load B register 
WCPB Write, Acc = C Register + Product, Load B register 

WZPC Write, Acc = Zero + Product, Load C register 
WAPC Write, Acc = Acc + Product, Load C register 
WBPC Write, Acc = B Register + Product, Load C register 
WCPC Write, Acc = C Register + Product, Load C register 

WZPBC Write, Acc = Zero + Product, Load B and C registers 
WAPBC Write, Acc = Acc + Product, Load B and C registers 
WBPBC Write, Acc = B Register + Product, Load B and C registers 
WCPBC Write, Acc = C Register + Product, Load B and C registers 



 

 

 

www.wavefrontsemi.com 

5 

For example: 

RZP delay”  K=.500  ; Read (middle of delay)/2 into Acc 
WAP delay+125 192  ; Write to 125th delay tap, Acc = -0.5*Acc 
RAPB delay'  K=128  ; Acc = -1*(end of delay)+Acc, B = end of delay 
WBPC delay’-1   ; Write to next-to-last delay tap, Acc & C = B + 0*Acc 
RCP ADCL  K=0x7F ; Read ~1*(Left Input) into Acc and C 
WCPB OUTR  K=-0x40 ; B=Acc, write C-0.5*Acc into Right Output and Acc 

 
 
Chorus Controls 
These statements define instructions as chorus commands.  They redefine the coefficient bits to 
alternate meanings, and thus the lack of coefficients in chorus instructions. Two adjacent 
commands are used to create chorusing, in order to interpolate to the exact fraction of a sample 
between two (integer) samples. 

The Chorus Controls consist of the following parameters: 

[+SIN|-SIN|+COS|-COS]    [COMPK]    [COMPA]    [MASKA]   [LATCH]    [COMPS] 
 

+SIN  Use +sine output of selected LFO. 
-SIN  Use -sine output of selected LFO. 
+COS  Use +cosine output of selected LFO. 
-COS  Use -cosine output of selected LFO. 

The LFOs each have four taps: a ±sine output and a ±cosine output.  The parameters described 
above indicate which tap to use.  If this parameter is omitted, the default value used is +SIN.  
The sign is mandatory, "SIN" will be flagged as an error and prevent assembly. 
 

COMPK One's complement the chorus interpolation coefficient. 

The LFO output is split into two parts: an offset address and an interpolation coefficient.  The 
offset address is sent to the address generator for the Data RAM, and is not accessible to the 
user.  The interpolation coefficient should be applied to the value at the specified address, the 
1's complement of the coefficient then applied to the value at address+1.  The COMPK parameter 
will perform a one's complement on the coefficient. 
 

COMPA One's complement the chorus interpolation address. 

This parameter will perform a one's complement on the chorus interpolation address, effectively 
shifting the phase of the chorus waveform by 180°.  Specifying COMPA with +SIN is equal to 
specifying -SIN. In fact -SIN or -COS sets the same bit as COMPA.  This statement is 
implemented for use in pitch transposition for increasing source code clarity.  Proper use of the 
LFO output statements will make this command superfluous. 
 

MASKA Mask chorus generator offset address, select the crossfade coefficient. 

When the two interpolations required by pitch transposition are complete, they must be read 
back from memory and summed using the crossfade coefficient.  In a chorus command, the 
address generator will want to add the chorus offset address when generating the absolute 
address.  This can be overridden with the MASKA parameter so that the offset is masked off, 
and the address read from is as specified in the instruction.  This parameter also indicates that 
the crossfade coefficients selected by the LFO Setup Instruction be used. 
 

LATCH Latch the data from selected LFO. 

When pairs of chorus commands are implemented, the LFO data must be latched; otherwise, the 
LFO could change during the execution of the commands, and unpredictable results could occur.  
This is required on the first chorus command, but must be omitted from the second. 
 



 

 

 

www.wavefrontsemi.com 

6 

COMPS One's complement the sign bit of the chorus offset address. 

This parameter will perform a one's complement of the sign bit of the chorus offset address.  
This is a leftover from a previous ASIC revision and is included here for informational purposes. 
 
For example: 

CHR0 RZP   mem -COS    COMPK   LATCH ; Read fractional -COS chorus of mem 
CHR0 RAP   mem+1 -COS   ; Sum with fractional of 2nd address 

 CHR1 RZP   stor1   COMPK   MASKA   LATCH ; Read fractional crossfade of stor1 
 CHR1 RAP   stor2                MASKA ; Sum with fractional crossfade of stor2 
 
 
 

ABS Statement 

DREAsm provides the ABS statement as a means of declaring absolute address labels.  The ABS 
statement format is as follows: 

ABS    NAME    [ADDRESS]    [; COMMENTS] 

where NAME can be any unique alpha-numeric string.  The first character of a name must be a 
letter, and spaces are not permitted.  ADDRESS is the absolute address.  The address may be 
specified as a decimal or hexadecimal integer.  To specify hexadecimal, prefix the number with a 
“0x” or suffix it with an “H”. 

For example: 

ABS param  0x0081 ; Use direct address memory as a parameter 
 
Memory address offsets and addresses above 129 do not work with the ABS statement.  Be sure 
that the code only accesses the exact address below 130 specified by ABS. 

For example: 

ABS hparams 0x0082 ; This will give an error 
ABS params 0x0081 ; This will work 
RZP params+3 0.5  ; This will give an error 
RZP params 0.5  ; This will work 

 
 
 

EQU Statement 

DREAsm provides the EQU statement as a means of defining constants for coefficients.  The 
EQU statement format is as follows: 

NAME    EQU    VALUE    [; COMMENTS] 

where NAME can be any unique alpha-numeric string.  The first character of a name must be a 
letter, and spaces are not permitted.  VALUE is the numerical value for NAME, and must be a 
valid coefficient format. 

For example: 

gain EQU  0.5  ; Specifies a gain coefficient of -6dB 
RZP  INL  gain  ; Get Left Input, gained down, in accumulator 
WAP OUTL  0.0  ; Write the accumulator to Left Output 

Note that EQU statements are not recursive.  You may not equate a name to a value, and then 
equate another name to the first name. 
 



 

 

 

www.wavefrontsemi.com 

7 

MEM Statement 

DREAsm provides the MEM statement as a means of declaring address labels and allocating 
Data RAM usage.  Address labels may be placed anywhere in the assembly file, as long as they 
are declared before their usage.  The MEM statement format is as follows: 

MEM    NAME    SIZE    [; COMMENTS] 

where NAME may be any unique alphanumeric string.  The first character of a name must be a 
letter, and spaces are not permitted.  SIZE is the size of the memory block, and is specified as 
the number of samples in decimal or hexadecimal.  To specify a hexadecimal block size, prefix 
the number with a “0x” or suffix it with an “H”.  Size may also be specified in milliseconds 
(assuming a 44.1kHz sample frequency) by suffixing the number with “ms”. 

For example: 

MEM LPF  1  ; Specifies a unit delay 1 sample long 
MEM delay  100  ; Specifies a delay line 100 samples long 
MEM FIR  0x20  ; Specifies a delay line 32 samples long 
MEM predelay 50.0ms ; Specifies a delay line 50.0ms long 

 
DREAsm will allocate the Data RAM beginning at address 0 and work up to the higher addresses.  
Note that since this declaration takes the memory offset counter into account, the actual 
number of memory locations allocated is 1 larger than specified.  Also note that since the 
memory offset counter is a down-counter, writes should be done to lower addresses and reads of 
delayed data done from higher addresses. 

For example: 

 WZP 0H  K=0.5  ; Write data to be delayed 
 RZP 4H  K=0.5  ; Read 4-sample-delayed data 
 
Once you have defined your memory elements, you may access them in a number of ways.  
Simply using the name refers to the front of the delay line.  Suffixing the name with an 
apostrophe (‘) refers to the back of the delay line. Suffixing the name with a quote (“) refers to 
the middle of the delay line. 

For example, here is the code for a 100-sample delay: 

MEM delay  100  ; Specifies a delay line 100 samples long 
RZP INL  127  ; Get Left Input into the accumulator 
WAP delay  0  ; Write accumulator to front of delay line 
RZP delay’  127  ; Read from the back of the delay line 
WAP OUTL  0  ; Write the accumulator to Left Output 

 
You can offset into a delay line by using the + or - modifiers. 

For example, to access the 512th tap of a long FIR filter: 

MEM FIR  1023  ; Use 1023 locations of Data RAM 
RZP INR  127  ; Get Right Input into the accumulator 
WAP FIR  0  ; Write accumulator to the front of delay line 
RZP FIR+512 127  ; Read the 512th tap of the FIR 
WAP OUTR  0  ; Write the accumulator to Right Output 

The suffixes and offsets may be mixed in an instruction. 
 



 

 

 

www.wavefrontsemi.com 

8 

SEG Statement 

DREAsm provides the SEG statement as a means of segmenting the Data RAM by setting the 
starting point for memory allocation.  The SEG statement format is as follows: 

SEG    ADDRESS    [; COMMENTS] 

where ADDRESS is the start address of the memory segment.  The address is specified in 
decimal or hexadecimal integer.  To specify hexadecimal, prefix the number with a “0x” or suffix 
it with an “H”. 

For example: 

SEG LEFT  2  ; “Left” segment starts at the bottom of memory 
MEM delayl  100  ; Specifies a delay line 100 samples long 
SEG RIGHT  0x4000 ; “Right” segment starts at the middle of memory 
MEM delayr  100  ; Specifies a delay line 100 samples long 

DREAsm will allocate the Data RAM beginning at the specified address and work up to the 
higher addresses.  Be sure that the address specified is not 0 or 1, as those are reserved for the 
Left/Right Input/Output. 
 
 
 

Reserved Memory Labels 

For your convenience, a number of memory labels have been pre-defined by the assembler.  They 
may be accessed them just as any other memory element.  They are: 

INL --------------------- Left Input (read only) 
ADCL ------------------ Left Input (read only) 
INR --------------------- Right Input (read only) 
ADCR ------------------ Right Input (read only) 
OUTL ------------------ Left Output (write only) 
OUTR ------------------ Right Output (write only) 

For example: 

 RZP INL  0.5  ; Read Left Input 
 RZP ADCL  0.5  ; Read Left Input 
 RZP 0  0.5  ; Read Left Input 
 
 
 

Comments 

Comments are delimited by the semicolon (;) character. The assembler ignores everything from 
the semicolon to the end of the line. 

For example: 

; ::::::::This is a valid comment:::::::: 
RZP mem $5 ;This is also a valid comment; all text here is ignored. 



 

 

 

www.wavefrontsemi.com 

9 

 

 
 

NOTICE 

Wavefront Semiconductor reserves the right to make changes to their products 
or to discontinue any product or service without notice.  All products are sold 
subject to terms and conditions of sale supplied at the time of order 
acknowledgement.  Wavefront Semiconductor assumes no responsibility for the 
use of any circuits described herein, conveys no license under any patent or 
other right, and makes no representation that the circuits are free of patent 
infringement.  Information contained herein is only for illustration purposes and 
may vary depending upon a user’s specific application.  While the information in 
this publication has been carefully checked, no responsibility is assumed for 
inaccuracies. 

Wavefront Semiconductor products are not designed for use in applications 
which involve potential risks of death, personal injury, or severe property or 
environmental damage or life support applications where the failure or 
malfunction of the product can reasonably be expected to cause failure of the life 
support system or to significantly affect its safety or effectiveness. 

All trademarks and registered trademarks are property of their respective owners. 

 
 
 

Contact Information: 
 

Wavefront Semiconductor 
200 Scenic View Drive 

Cumberland, RI  02864  U.S.A. 
Tel: +1 401 658-3670 
Fax: +1 401 658-3680 

On the web at www.wavefrontsemi.com 

Email: info@wavefrontsemi.com 
 
 
 
 

Copyright © 2005 Wavefront Semiconductor 

Application note revised March, 2005 

Reproduction, in part or in whole, without the prior written consent of Wavefront 
Semiconductor is prohibited. 

 


