Low-Cost One-Chip
Multi-Effects DSP

V1000

1. General Description

With 16 built-in reverb and multi-effects, the V1000 Digital Multi-Effects DSP delivers outstanding audio performance in a rapid time-to-market solution at a very affordable price. Since the V1000 incorporates its own RAM and on-board effects, a complete reverb system can be designed with only the V1000, a low-cost ADC and DAC, and a simple 4-bit controller such as a rotary encoder etc.

2. Features

- 16 internal ROM programs consisting of effects such as multiple reverbs, echo, phaser, chorus, flanger, etc.
- Serially programmable SRAM (Writeable Control Store - WCS) for program development or dynamically changing programs
- Programs run at 128 instructions per word clock. (6 MIPS @ 48 khz sampling frequency)
- 32k location Static Ram provides over 0.68 sec of delay at $\mathbf{4 8} \mathbf{k H z}$ sampling frequency
- Package outline: SOIC-16/300
- ROHS compliant (PB-free)

Information furnished by COOLAUDIO is believed to be accurate and reliable. However, no responsibility is assumed by COOLAUDIO for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of COOLAUDIO.
Rev. 1.0

3. Electrical Characteristics and Operating Conditions

Parameter	Description	Condition	Min	Typ	Max	Units
VDD	Supply Voltage		3.0	3.3	3.6	V
Idd	Supply Current			24		mA
Gnd	Ground			0.0		V
Fs	Sample Rate		20	48		kHz

4. Outputs (DigOut, SysClk, Bitclik, WordClik)

Parameter	Description	Condition	Min	Typ	Max	Units
V_{OH}	Logic "1" output voltage	Unloaded	2.9	-	-	V
V_{OL}	Logic "0" output voltage	Unloaded	-	0	0.6	V

5. Inputs (Digln, IntExt_, Progo/sdata, Prog1/SClk, Prog2, Prog 3 , Reset_)

Parameter	Description	Condition	Min	Typ	Max	Units
VIH	Logic "1" input voltage		2.0	-	5.0	V
VIL	Logic "0" input voltage		0.0	-	$0.3^{*} \mathrm{Vdd}$	V

6. Pin Descriptions V1000

Pin\#	Name	PinType	Description
1	DigOut	Output	Digital serial output for stereo DAC
2	Int/Ext_	Input	Internal/external program selection
3	Xtalln	Input	12.288 MHz crystal input
4	XtalOut	Output	12.288 MHz crystal output
5	Prog0/SData	Input	Internal program select0/serial interface data line
6	Prog1/SCIk	Input	Internal program select1/serial interface clock line
7	Prog2	Input	Internal program select2
8	Prog3	Input	Internal program select3
9	WordClk	Output	Word clock output
10	BitClk	Output	Bit clock output
11	SysClk	Output	System clock output
12	Reset_	Input	Active low reset
13	Gnd	Ground	Ground connection
14	Vdd	Power	Vdd power pin
15	NC		
16	Digln	Input	Digital serial input for stereo ADC

Note:
Int/Ext_, prog0, prog1, prog2 and prog3 are pulled up to Vdd via nominal internal 30k resistor.

7. Block Diagram

8. Internal Programs

The SCR comes with 16 internal ROM programs ready to go. By setting the chip to internal mode, the four program pins may be used to select between the different algorithms.

Prog[3:0]	Name	Description
0000	Medium	Reverb, Small hall (1.5 sec.)
0001	Chambr7b	Reverb, Big hall (2.8 sec.)
0010	Room3b	Reverb, Room (1.8 sec.)
0011	Chamber2	Reverb, Church (7 sec.)
0100	Revers3b	Reverb Reverse (1.2 sec.)
0101	Gated4b	Reverb Gated (0.8 sec.)
0110	Room2a	Reverb Chapel (3 sec.)
0111	Spring3b	Reverb Spring (2 sec.)
1000	Phaser1	Phaser
1001	Flanger2	Flanger
1010	Delay7	Echo
1011	Chorus4	Chorus
1100	Earlref4	Early Reflection
1101	Amb4	Big Ambience
1110	Delay3	Stereo Delay
1111	Delay1	Slap-back Delay

9. Programming the RAM

Alongside the 16 internal programs is an externally programmable SRAM that is easily accessible through the serial clock and data pins, by setting the chip to external mode, the SCIk and SData pins become available for serial communication. Except for its external programmability, there is no functional difference between the SRAM and the internal ROMs.

10. Memory Map

Addr	Name		
0.127	WCS RAM	Addr	Name
		$0: 3$	LFO Coefficients
		$4: 127$	MAC Instructions
128	Control/Status 0		

11. LFO Coefficient Word

Bit\#	Description		
31	P: Pitch shift mode select (S must be set).		
30	S : sine/triangle select. 1:Triangle; 0: Sine.		
29:28	X[1:0]: Cross fade Coefficient select. Value indicates the fraction of a half sawtooth period used in cross fading	X[1:0]	Xfade
		11	1/16
		10	1/8
		01	1/2
		00	1
27:25	F [12:0]: Frequency coefficient, unsigned.		
14:0	A[14:0]: Amplitude coefficient, unsigned.		

Note:
If set, the output wave form is a sawtooth with double the triangle wave's frequency.
Sawtooth SIN
Sawtooth COS
Crossfade 1
Crossfade $1 / 2$
Crossfade $1 / 8$

Notes:

1. Crossfade only used in saw tooth wave.
2. The sinusoid generated by the LFOs is or the formula $A \sin (n F / M)$ or $A \cos (n F / M)$, where n is the time index, $F / M-2 \pi f / F s, M$ is the maximum internal value, fit the selected frequency, and Fs is the sampling frequency.

Thus the frequency limits are:
$f=(F / M) F s /(2 \pi)$

For triangle waves, its frequency limits are
$\mathrm{f}=\mathrm{Fs} /(4 \mathrm{Max} /$ Increment)
= Fs /(4 0x7fffff/222*F/M)

12. MAC Instruction Word

Notes:

1. This complement is only for the MSB, and sign-extension bits are not affected.
2. The LeftOut, RightOut, and C registers are in parallel with the accumulator, and will contain the same value as the accumulator if clocked at the end of the tick. Thus, a write to LeftOut or RightOut will store the current tick's results.
3. A write to SRAM stores the last tick's results into address A. During writes, the multiplicand is set to be the Acc, since $A[15: 0]$ is used for the excursion address. Writes to LeftOut or RightOut can use the Acc $=$ Product + Acc instruction with the multiplier coefficient set to 0 to pass all bits unaltered.
4. Register B, if clocked at the end of the tick, will store the value of the current tick's multiplicand. When a read is executed, B latches LeftIn, RightIn, or SRAM. When a write is executed, B latches the accumulator from the last tick.
5. The accumulator contains the result from the last instruction tick, and is updated at the end of the current instruction tick.
6. The internal SRAM address offset automatically decrements by 1 every word clock period.
7. Because addresses 0×0000 and 0×0001 are being used to access the left and right channels, those SRAM memory locations may not be directly written to or read from.

13. Control / Status Word 0

Bit \#	Description
$31: 8$	Reserved. Set to zero.
7	M: DigOut mute in external made. Resets to 1.
6	Z: SRAM zero. Initiates zeroing cycles until de-asserted. Resets to 0.
5	Reserved. Set to zero.
4	L: LFO reset pulse. Resets LFO internal status registers and clears overflow flag. Self clearing. Resets to 0.
3	I: Instruction RAM direct mode. Resets to 1. 1: Instructions are written / read as soon as received; 0: Instructions are written / read when the address counter rolls around to matching address.
$2: 0$	Reserved. Set to zero.

14. Instruction Set

LFO Declarations

The LFOs must be set up with operating parameters if you want to use them. These include amplitude and frequency coefficients, and waveform selection. The setup information for the four LFOs occupy the first four ticks in the program RAM, but the LFO setup declarations may be anywhere in the input file.
LFOn=[wav] AMP=[amp] FREQ=[freq] XFAD=[xfad]
n : LFO selection. LFOs 0 through 3 are available.
[wav]: Waveform selection. SIN: sinusoid. TRI: triangle. SAW: saw tooth.
[amp]: Waveform amplitude coefficient. $\pm[\mathrm{amp}] / 8$ samples. 15 -bit value.
[freq]: Waveform frequency coefficient. 13-bit value.
[xfad]: Cross fade coefficient selection. Choices are: $1,1 / 2,1 / 8,1 / 16$. Used for SAW waveform only.

MAC mnemonic
 READ INSTRUCTIONS

RZP Read, Acc = Zero + Product
RAP Read, Acc $=$ Acc + Product
RBP Read, Acc $=$ B Register + Product
RCP Read, Acc = C Register + Product
RZPB Read, Acc = Zero + Product, Load B register
RAPB Read, Acc $=$ Acc + Product, Load B register
RBPB Read, Acc $=$ B Register + Product, Load B register
RCPB Read, Acc $=C$ Register + Product, Load B register
RZPC Read, Acc = Zero + Product, Load C register
RAPC Read, Acc = Acc + Product, Load C register
RBPC Read, Acc $=$ B Register + Product, Load C register
RCPC Read, Acc = C Register + Product, Load C register
RZPBC Read, Acc = Zero + Product, Load B and C registers
RAPBC Read, Acc = Acc + Product, Load B and C registers
RBPBC Read, Acc $=$ B Register + Product, Load B and C registers
RCPBC Read, Acc = C Register + Product, Load B and C registers
WRITE INSTRUCTIONS
WZP Write, Acc = Zero + Product
WAP Write, Acc = Acc + Product
WBP Write, Acc $=B$ Register + Product
WCP Write, Acc = C Register + Product
WZPB Write, Acc = Zero + Product, Load B register
WAPB Write, Acc = Acc + Product, Load B register
WBPB Write, Acc $=\mathrm{B}$ Register + Product, Load B register
WCPB Write, Acc = C Register + Product, Load B register
WZPC Write, Acc = Zero + Product, Load C register
WAPC Write, Acc = Acc + Product, Load C register
WBPC Write, Acc = B Register + Product, Load C register
WCPC Write, Acc = C Register + Product, Load C register
WZPBC Write, Acc = Zero + Product, Load B and C registers
WAPBC Write, Acc = Acc + Product, Load B and C registers
WBPBC Write, Acc = B Register + Product, Load B and C registers
WCPBC Write, Acc = C Register + Product, Load B and C registers

CHORUS mnemonic

CHRn [MAC mnemonic] [label] [chorus controls] [optional statements]
The first three statements are required in the order given. The chorus controls and optional statements may then follow in any order, although for readability the above convention should be followed.

DATA Memory Access

The MEM instruction creates a block of memory from the free memory stack. The ABS instruction specifies one particular address, useful for buffers that only require one memory location.
One sample of delay requires $\mathbf{2}$ memory locations, 10 samples of delay requires 11 memory locations, etc. Memory is allocated from the free memory stack as it is requested
Examples:
MEM delay 1024; 1024 location delay block.
MEM buff3 $0 \times 0400 ; 1024$ location buffer.
ABS store 2; Storage location at address 2.
ABS temp2 0x7FFF; Temporary storage at address 32767.

15. Serial Interface Format

The basic format for the micro serial interface is:

Attn Sel R/W A7 A6 A5 A4 A3 A2 A1 A0 DN DN-1 DN-2 ... D2 D1 D0 Attn Desel

Attn : A 0-1-0 is used to signal attention / start.
Sel / Desel : 0: Select; 1: Deselect.
A7 - A0 : Address.
R/W : 0: Read; 1: Write.
DN - D0 : Data
Attn Desel : Write mode only.

Notes:

1. As long as data is being send during a write, the address will be automatically incremented. Therefore only a start address need be sent. 2. The phase of the clock is unimportant.

Write Timing $($ Tcyc $=1 /$ FmasterClk $)$

Digln / DigOut Interface Format

16. Mechanical Specification

V1000

17. Schematic Diagrams

